OpenCompass/configs/datasets/ceval/ceval_ppl_162686.py
2023-07-04 21:34:55 +08:00

189 lines
7.5 KiB
Python

from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import FixKRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import CEvalDataset
ceval_subject_mapping = {
"computer_network":
["Computer Network", "\u8ba1\u7b97\u673a\u7f51\u7edc", "STEM"],
"operating_system":
["Operating System", "\u64cd\u4f5c\u7cfb\u7edf", "STEM"],
"computer_architecture":
["Computer Architecture", "\u8ba1\u7b97\u673a\u7ec4\u6210", "STEM"],
"college_programming":
["College Programming", "\u5927\u5b66\u7f16\u7a0b", "STEM"],
"college_physics": ["College Physics", "\u5927\u5b66\u7269\u7406", "STEM"],
"college_chemistry":
["College Chemistry", "\u5927\u5b66\u5316\u5b66", "STEM"],
"advanced_mathematics":
["Advanced Mathematics", "\u9ad8\u7b49\u6570\u5b66", "STEM"],
"probability_and_statistics":
["Probability and Statistics", "\u6982\u7387\u7edf\u8ba1", "STEM"],
"discrete_mathematics":
["Discrete Mathematics", "\u79bb\u6563\u6570\u5b66", "STEM"],
"electrical_engineer": [
"Electrical Engineer", "\u6ce8\u518c\u7535\u6c14\u5de5\u7a0b\u5e08",
"STEM"
],
"metrology_engineer":
["Metrology Engineer", "\u6ce8\u518c\u8ba1\u91cf\u5e08", "STEM"],
"high_school_mathematics":
["High School Mathematics", "\u9ad8\u4e2d\u6570\u5b66", "STEM"],
"high_school_physics":
["High School Physics", "\u9ad8\u4e2d\u7269\u7406", "STEM"],
"high_school_chemistry":
["High School Chemistry", "\u9ad8\u4e2d\u5316\u5b66", "STEM"],
"high_school_biology": [
"High School Biology", "\u9ad8\u4e2d\u751f\u7269", "STEM"
],
"middle_school_mathematics": [
"Middle School Mathematics", "\u521d\u4e2d\u6570\u5b66", "STEM"
],
"middle_school_biology": [
"Middle School Biology", "\u521d\u4e2d\u751f\u7269", "STEM"
],
"middle_school_physics": [
"Middle School Physics", "\u521d\u4e2d\u7269\u7406", "STEM"
],
"middle_school_chemistry": [
"Middle School Chemistry", "\u521d\u4e2d\u5316\u5b66", "STEM"
],
"veterinary_medicine": [
"Veterinary Medicine", "\u517d\u533b\u5b66", "STEM"
],
"college_economics": [
"College Economics", "\u5927\u5b66\u7ecf\u6d4e\u5b66", "Social Science"
],
"business_administration": [
"Business Administration", "\u5de5\u5546\u7ba1\u7406", "Social Science"
],
"marxism": [
"Marxism", "\u9a6c\u514b\u601d\u4e3b\u4e49\u57fa\u672c\u539f\u7406",
"Social Science"
],
"mao_zedong_thought": [
"Mao Zedong Thought",
"\u6bdb\u6cfd\u4e1c\u601d\u60f3\u548c\u4e2d\u56fd\u7279\u8272\u793e\u4f1a\u4e3b\u4e49\u7406\u8bba\u4f53\u7cfb\u6982\u8bba",
"Social Science"
],
"education_science": [
"Education Science", "\u6559\u80b2\u5b66", "Social Science"
],
"teacher_qualification": [
"Teacher Qualification", "\u6559\u5e08\u8d44\u683c", "Social Science"
],
"high_school_politics": [
"High School Politics", "\u9ad8\u4e2d\u653f\u6cbb", "Social Science"
],
"high_school_geography": [
"High School Geography", "\u9ad8\u4e2d\u5730\u7406", "Social Science"
],
"middle_school_politics": [
"Middle School Politics", "\u521d\u4e2d\u653f\u6cbb", "Social Science"
],
"middle_school_geography": [
"Middle School Geography", "\u521d\u4e2d\u5730\u7406", "Social Science"
],
"modern_chinese_history":
["Modern Chinese History", "\u8fd1\u4ee3\u53f2\u7eb2\u8981", "Humanities"],
"ideological_and_moral_cultivation": [
"Ideological and Moral Cultivation",
"\u601d\u60f3\u9053\u5fb7\u4fee\u517b\u4e0e\u6cd5\u5f8b\u57fa\u7840",
"Humanities"
],
"logic": ["Logic", "\u903b\u8f91\u5b66", "Humanities"],
"law": ["Law", "\u6cd5\u5b66", "Humanities"],
"chinese_language_and_literature": [
"Chinese Language and Literature",
"\u4e2d\u56fd\u8bed\u8a00\u6587\u5b66", "Humanities"
],
"art_studies": ["Art Studies", "\u827a\u672f\u5b66", "Humanities"],
"professional_tour_guide": [
"Professional Tour Guide", "\u5bfc\u6e38\u8d44\u683c", "Humanities"
],
"legal_professional": [
"Legal Professional", "\u6cd5\u5f8b\u804c\u4e1a\u8d44\u683c",
"Humanities"
],
"high_school_chinese": [
"High School Chinese", "\u9ad8\u4e2d\u8bed\u6587", "Humanities"
],
"high_school_history": [
"High School History", "\u9ad8\u4e2d\u5386\u53f2", "Humanities"
],
"middle_school_history": [
"Middle School History", "\u521d\u4e2d\u5386\u53f2", "Humanities"
],
"civil_servant": ["Civil Servant", "\u516c\u52a1\u5458", "Other"],
"sports_science": ["Sports Science", "\u4f53\u80b2\u5b66", "Other"],
"plant_protection": [
"Plant Protection", "\u690d\u7269\u4fdd\u62a4", "Other"
],
"basic_medicine": ["Basic Medicine", "\u57fa\u7840\u533b\u5b66", "Other"],
"clinical_medicine": [
"Clinical Medicine", "\u4e34\u5e8a\u533b\u5b66", "Other"
],
"urban_and_rural_planner": [
"Urban and Rural Planner",
"\u6ce8\u518c\u57ce\u4e61\u89c4\u5212\u5e08", "Other"
],
"accountant": ["Accountant", "\u6ce8\u518c\u4f1a\u8ba1\u5e08", "Other"],
"fire_engineer": [
"Fire Engineer", "\u6ce8\u518c\u6d88\u9632\u5de5\u7a0b\u5e08", "Other"
],
"environmental_impact_assessment_engineer": [
"Environmental Impact Assessment Engineer",
"\u73af\u5883\u5f71\u54cd\u8bc4\u4ef7\u5de5\u7a0b\u5e08", "Other"
],
"tax_accountant": ["Tax Accountant", "\u7a0e\u52a1\u5e08", "Other"],
"physician": ["Physician", "\u533b\u5e08\u8d44\u683c", "Other"]
}
ceval_all_sets = list(ceval_subject_mapping.keys())
ceval_datasets = []
for _split in ["val", "test"]:
for _name in ceval_all_sets:
_ch_name = ceval_subject_mapping[_name][1]
ceval_infer_cfg = dict(
ice_template=dict(
type=PromptTemplate,
template={
answer: dict(
begin="</E>",
round=[
dict(
role="HUMAN",
prompt=
f"以下是中国关于{_ch_name}考试的单项选择题,请选出其中的正确答案。\n{{question}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案: "
),
dict(role="BOT", prompt=answer),
])
for answer in ["A", "B", "C", "D"]
},
ice_token="</E>",
),
retriever=dict(type=FixKRetriever),
inferencer=dict(type=PPLInferencer, fix_id_list=[0, 1, 2, 3, 4]),
)
ceval_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
ceval_datasets.append(
dict(
type=CEvalDataset,
path="./data/ceval/formal_ceval",
name=_name,
abbr="ceval-" + _name if _split == "val" else "ceval-test-" +
_name,
reader_cfg=dict(
input_columns=["question", "A", "B", "C", "D"],
output_column="answer",
train_split="dev",
test_split=_split),
infer_cfg=ceval_infer_cfg,
eval_cfg=ceval_eval_cfg,
))
del _split, _name, _ch_name