OpenCompass/configs/multimodal/mplug_owl/mplug_owl_7b_mmbench.py
Yuanhan Zhang 7c2726c23b
[Model] Yhzhang/add mlugowl llamaadapter (#405)
* refine gitignore

* [Feature]: Add minigpt-4

* [Feature]: Add mm local runner

* [Feature]: Add instructblip

* add otter and llama-adapter

* add owl

* add llama2-adapter and owl

* lint

* [Feature]: Add minigpt-4

* [Feature]: Add instructblip

* add otter and llama-adapter

* add owl

* add llama2-adapter and owl

* lint

* lint

* update

* lint

* lint

* add __init__.py

* update

* update

* update

* update

* [Feature]: Add minigpt-4

* [Feature]: Add mm local runner

* [Feature]: Add instructblip

* add otter and llama-adapter

* add owl

* add llama2-adapter and owl

* lint

* [Feature]: Add minigpt-4

* [Feature]: Add instructblip

* add otter and llama-adapter

* add owl

* add llama2-adapter and owl

* lint

* lint

* update

* lint

* lint

* add __init__.py

* update

* update

* update

* update

* optimize mmbench dataset args

* update

* update

* run commit hook

---------

Co-authored-by: liuyuan <3463423099@qq.com>
Co-authored-by: kennymckormick <dhd@pku.edu.cn>
Co-authored-by: kennymckormick <dhd.efz@gmail.com>
2023-09-19 14:21:26 +08:00

50 lines
1.5 KiB
Python

from opencompass.multimodal.models.mplug_owl import (
MplugOwlMMBenchPostProcessor, MplugOwlMMBenchPromptConstructor)
# dataloader settings
val_pipeline = [
dict(type='mmpretrain.torchvision/Resize',
size=(224, 224),
interpolation=3),
dict(type='mmpretrain.torchvision/ToTensor'),
dict(
type='mmpretrain.torchvision/Normalize',
mean=(0.48145466, 0.4578275, 0.40821073),
std=(0.26862954, 0.26130258, 0.27577711),
),
dict(
type='mmpretrain.PackInputs',
algorithm_keys=[
'question', 'answer', 'category', 'l2-category', 'context',
'index', 'options_dict', 'options'
],
),
]
dataset = dict(type='opencompass.MMBenchDataset',
data_file='data/mmbench/mmbench_test_20230712.tsv',
pipeline=val_pipeline)
mplug_owl_mmbench_dataloader = dict(
batch_size=1,
num_workers=4,
dataset=dataset,
collate_fn=dict(type='pseudo_collate'),
sampler=dict(type='DefaultSampler', shuffle=False),
)
# model settings
mplug_owl_mmbench_model = dict(
type='mplug_owl_7b',
model_path='/mplug-owl-llama-7b-ft/',
prompt_constructor=dict(type=MplugOwlMMBenchPromptConstructor),
post_processor=dict(type=MplugOwlMMBenchPostProcessor)
) # noqa
# evaluation settings
mplug_owl_mmbench_evaluator = [
dict(type='opencompass.DumpResults',
save_path='work_dirs/mplug_owl-7b-mmagibench-v0.1.0.xlsx')
]
mplug_owl_mmbench_load_from = None