mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00

* support NPHardEval * add .md file and fix minor bugs * refactor and minor fix --------- Co-authored-by: Leymore <zfz-960727@163.com>
197 lines
8.1 KiB
Python
197 lines
8.1 KiB
Python
import ast
|
|
import json
|
|
|
|
import networkx as nx
|
|
from datasets import Dataset
|
|
|
|
from opencompass.openicl.icl_evaluator import BaseEvaluator
|
|
from opencompass.registry import ICL_EVALUATORS, LOAD_DATASET
|
|
|
|
from ..base import BaseDataset
|
|
from .prompts import sppPrompts
|
|
|
|
|
|
def q2text(q, p=sppPrompts):
|
|
# start_node = q['start_node']
|
|
# end_node = q['end_node']
|
|
# TO-DO: fix later
|
|
start_node = q['nodes'][0]
|
|
end_node = q['nodes'][-1]
|
|
edges = q['edges']
|
|
prompt_text = p['Intro'] + '\n' + \
|
|
p['Initial_question'].format(start_node=start_node, end_node=end_node) + '\n' + \
|
|
p['Output_content'] + '\n' + \
|
|
p['Output_format'] + \
|
|
"\n The graph's edges and weights are as follows: \n"
|
|
for edge in edges:
|
|
this_line = f"Edge from {edge['from']} to {edge['to']} has a weight of {edge['weight']}."
|
|
prompt_text += this_line + '\n'
|
|
return prompt_text
|
|
|
|
|
|
@LOAD_DATASET.register_module(force=True)
|
|
class p_SPP_Dataset(BaseDataset):
|
|
|
|
@staticmethod
|
|
def load(path: str):
|
|
raw_data = []
|
|
data_path = path
|
|
all_data = []
|
|
with open(data_path + 'spp_instances.json', 'r') as f:
|
|
data = json.load(f)
|
|
all_data = zip([int(d['complexity_level']) for d in data], data)
|
|
for level, q in all_data:
|
|
prompt = q2text(q)
|
|
raw_data.append({
|
|
'prompt': prompt,
|
|
'q': str(level) + '####\n' + json.dumps(q),
|
|
'level': level
|
|
})
|
|
dataset = Dataset.from_list(raw_data)
|
|
return dataset
|
|
|
|
|
|
@ICL_EVALUATORS.register_module(force=True)
|
|
class p_SPP_Evaluator(BaseEvaluator):
|
|
|
|
def score(self, predictions, references):
|
|
assert len(predictions) == len(references)
|
|
|
|
result = {'pass': 0, 'fail': 0}
|
|
for index, (q, output) in enumerate(zip(references, predictions)):
|
|
output_dict = {}
|
|
level = int(q.split('####\n')[0])
|
|
q = json.loads(q.split('####\n')[-1])
|
|
output, reasoning = self.parse_xml_to_dict(output)
|
|
output_dict['output'] = output
|
|
try:
|
|
output_dict['correctness'], _ = self.spp_check(q, output)
|
|
except Exception as e:
|
|
print(f'Check failed: {e}')
|
|
output_dict['correctness'] = False
|
|
output_dict['reasoning'] = reasoning
|
|
output_dict['level'] = level
|
|
|
|
if output_dict['correctness']:
|
|
r = 'pass'
|
|
else:
|
|
r = 'fail'
|
|
result[r] += level
|
|
|
|
result['score'] = result['pass'] / (result['pass'] + result['fail']) * 100
|
|
final_result = {'Weighted Accuracy': result['score']}
|
|
return final_result
|
|
|
|
def parse_xml_to_dict(self, xml_string):
|
|
try:
|
|
assert '<final_answer>' in xml_string
|
|
assert '</final_answer>' in xml_string
|
|
# assert '<reasoning>' in xml_string
|
|
# assert '</reasoning>' in xml_string
|
|
final_answer_start = xml_string.index('<final_answer>') + len('<final_answer>')
|
|
final_answer_end = xml_string.index('</final_answer>')
|
|
# reasoning_start = xml_string.index('<reasoning>') + len('<reasoning>')
|
|
# reasoning_end = xml_string.index('</reasoning>')
|
|
final_answer_element = xml_string[final_answer_start:final_answer_end].rstrip().strip().rstrip()
|
|
assert '{' in final_answer_element
|
|
assert '}' in final_answer_element
|
|
dic_start = final_answer_element.index('{')
|
|
dic_end = final_answer_element.index('}')
|
|
final_answer_element = final_answer_element[dic_start:dic_end + 1].rstrip().strip().rstrip()
|
|
# reasoning_element = xml_string[reasoning_start:reasoning_end].rstrip().strip().rstrip()
|
|
try:
|
|
final_answer_element = ast.literal_eval(final_answer_element)
|
|
reasoning_element = xml_string
|
|
except Exception:
|
|
final_answer_element = ''
|
|
reasoning_element = xml_string
|
|
except Exception:
|
|
final_answer_element = ''
|
|
reasoning_element = ''
|
|
|
|
return final_answer_element, reasoning_element
|
|
|
|
def ssp_optimal_solution(self, instance, source, target):
|
|
"""Provides the optimal solution for the SSP instance.
|
|
|
|
:param instance: The SSP instance as a dictionary with 'nodes' and 'edges'.
|
|
:param source: The source node.
|
|
:param target: The destination node.
|
|
:return: The optimal shortest path length and path.
|
|
"""
|
|
G = nx.Graph()
|
|
G.add_nodes_from(instance['nodes'])
|
|
G.add_weighted_edges_from([(edge['from'], edge['to'], edge['weight'])
|
|
for edge in instance['edges']])
|
|
shortest_path_length = None
|
|
shortest_path = None
|
|
if nx.has_path(G, source=source, target=target):
|
|
shortest_path_length = nx.shortest_path_length(G, source=source, target=target, weight='weight')
|
|
shortest_path = nx.shortest_path(G, source=source, target=target, weight='weight')
|
|
return shortest_path_length, shortest_path
|
|
|
|
# SPP
|
|
def spp_check(self, instance, solution, start_node=None, end_node=None):
|
|
"""Validate the solution of the SPP problem.
|
|
|
|
:param instance: The instance dictionary with nodes and edges.
|
|
:param solution: The solution dictionary with the path and total distance.
|
|
:param start_node: The start node.
|
|
:param end_node: The end node.
|
|
:return: A tuple of (is_correct, message).
|
|
"""
|
|
# Get the start and end nodes
|
|
# Currently, the start and end nodes are the first and last nodes in the instance
|
|
if start_node is None:
|
|
start_node = instance['nodes'][0]
|
|
if end_node is None:
|
|
end_node = instance['nodes'][-1]
|
|
|
|
# Convert solution to dictionary
|
|
try:
|
|
path_string = solution.get('Path', '')
|
|
cost_string = solution.get('TotalDistance', '')
|
|
except Exception:
|
|
return False, 'The solution is not a dictionary.'
|
|
|
|
# Calculate the optimal solution
|
|
ssp_optimal_length, ssp_optimal_path = self.ssp_optimal_solution(
|
|
instance, start_node, end_node)
|
|
if ssp_optimal_length is None:
|
|
if isinstance(cost_string, int) or cost_string.isdigit():
|
|
return False, f'No path between from node {start_node} to node {end_node}.'
|
|
else:
|
|
return True, 'No path found from node {start_node} to node {end_node}.'
|
|
|
|
try:
|
|
path = list(map(int, path_string.split('->')))
|
|
total_cost = int(cost_string)
|
|
except Exception:
|
|
return False, 'The solution is not a valid dictionary.'
|
|
|
|
# Check if path starts and ends with the correct nodes
|
|
if not path or path[0] != start_node or path[-1] != end_node:
|
|
return False, 'The path does not start or end at the correct nodes.'
|
|
|
|
# Check if the path is continuous and calculate the cost
|
|
calculated_cost = 0
|
|
is_in_edge = lambda edge, from_node, to_node: (edge['from'] == from_node and edge['to'] == to_node) or (edge['from'] == to_node and edge['to'] == from_node)
|
|
for i in range(len(path) - 1):
|
|
from_node, to_node = path[i], path[i + 1]
|
|
edge = next((edge for edge in instance['edges'] if is_in_edge(edge, from_node, to_node)), None)
|
|
|
|
if not edge:
|
|
return False, f'No edge found from node {from_node} to node {to_node}.'
|
|
|
|
calculated_cost += edge['weight']
|
|
|
|
# Check if the calculated cost matches the total cost provided in the solution
|
|
if calculated_cost != total_cost:
|
|
return False, f'The calculated cost ({calculated_cost}) does not match the provided total cost ({total_cost}).'
|
|
|
|
if calculated_cost != ssp_optimal_length:
|
|
# spp_optimal_path = '->'.join(map(str, ssp_optimal_path))
|
|
return False, f'The calculated cost ({calculated_cost}) does not match the optimal solution ({ssp_optimal_length}): {ssp_optimal_path}.'
|
|
|
|
return True, 'The solution is valid.'
|