mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00

* support NPHardEval * add .md file and fix minor bugs * refactor and minor fix --------- Co-authored-by: Leymore <zfz-960727@163.com>
184 lines
6.8 KiB
Python
184 lines
6.8 KiB
Python
import ast
|
|
import json
|
|
|
|
from datasets import Dataset
|
|
|
|
from opencompass.openicl.icl_evaluator import BaseEvaluator
|
|
from opencompass.registry import ICL_EVALUATORS, LOAD_DATASET
|
|
|
|
from ..base import BaseDataset
|
|
from .prompts import kspPrompts
|
|
|
|
|
|
def q2text(q, p=kspPrompts):
|
|
knapsack_capacity = q['knapsack_capacity']
|
|
items = q['items']
|
|
prompt_text = p['Intro'] + '\n' + \
|
|
p['Initial_question'].format(knapsack_capacity=knapsack_capacity) + '\n' + \
|
|
p['Output_content'] + '\n' + \
|
|
p['Output_format'] + \
|
|
'\n The items details are as below: \n'
|
|
for item in items:
|
|
this_line = f"Item {item['id']} has weight {item['weight']} and value {item['value']}."
|
|
prompt_text += this_line + '\n'
|
|
return prompt_text
|
|
|
|
|
|
@LOAD_DATASET.register_module(force=True)
|
|
class cmp_KSP_Dataset(BaseDataset):
|
|
|
|
@staticmethod
|
|
def load(path: str):
|
|
raw_data = []
|
|
data_path = path
|
|
all_data = []
|
|
with open(data_path + 'ksp_instances.json', 'r') as f:
|
|
data = json.load(f)
|
|
for sample in data:
|
|
level = len(sample['items']) - 3
|
|
all_data.append((level, sample))
|
|
for (level, q) in all_data:
|
|
prompt = q2text(q)
|
|
raw_data.append({
|
|
'prompt': prompt,
|
|
'q': str(level) + '####\n' + json.dumps(q),
|
|
'level': level
|
|
})
|
|
dataset = Dataset.from_list(raw_data)
|
|
return dataset
|
|
|
|
|
|
@ICL_EVALUATORS.register_module(force=True)
|
|
class cmp_KSP_Evaluator(BaseEvaluator):
|
|
|
|
def score(self, predictions, references):
|
|
assert len(predictions) == len(references)
|
|
|
|
result = {'pass': 0, 'fail': 0}
|
|
details = {}
|
|
for index, (q, output) in enumerate(zip(references, predictions)):
|
|
output_dict = {}
|
|
level = int(q.split('####\n')[0])
|
|
q = json.loads(q.split('####\n')[-1])
|
|
try:
|
|
llm_string = q
|
|
output, reasoning = self.parse_xml_to_dict(llm_string)
|
|
output_dict['output'] = output
|
|
output_dict['correctness'], _ = self.kspCheck(q, output)
|
|
output_dict['reasoning'] = reasoning
|
|
output_dict['level'] = level
|
|
except Exception as e:
|
|
print(f'Attempt failed: {e}')
|
|
if output_dict:
|
|
if output_dict['correctness']:
|
|
r = 'pass'
|
|
else:
|
|
r = 'fail'
|
|
else:
|
|
print(f'Failed to run {q}')
|
|
r = 'fail'
|
|
|
|
result[r] += level
|
|
details[str(index)] = {'q': q, 'output': output, 'result': r}
|
|
|
|
result['score'] = result['pass'] / (result['pass'] + result['fail']) * 100
|
|
result['details'] = details
|
|
final_result = {'Weighted Accuracy': result['score']}
|
|
return final_result
|
|
|
|
def parse_xml_to_dict(self, xml_string):
|
|
try:
|
|
assert '<final_answer>' in xml_string
|
|
assert '</final_answer>' in xml_string
|
|
assert '<reasoning>' in xml_string
|
|
assert '</reasoning>' in xml_string
|
|
final_answer_start = xml_string.index('<final_answer>') + len('<final_answer>')
|
|
final_answer_end = xml_string.index('</final_answer>')
|
|
reasoning_start = xml_string.index('<reasoning>') + len('<reasoning>')
|
|
reasoning_end = xml_string.index('</reasoning>')
|
|
final_answer_element = xml_string[final_answer_start:final_answer_end].rstrip().strip().rstrip()
|
|
reasoning_element = xml_string[reasoning_start:reasoning_end].rstrip().strip().rstrip()
|
|
try:
|
|
final_answer_element = ast.literal_eval(final_answer_element)
|
|
except Exception:
|
|
final_answer_element = ''
|
|
except Exception:
|
|
final_answer_element = ''
|
|
reasoning_element = ''
|
|
|
|
return final_answer_element, reasoning_element
|
|
|
|
def ksp_optimal_solution(self, knapsacks, capacity):
|
|
"""Provides the optimal solution for the KSP instance with dynamic
|
|
programming.
|
|
|
|
:param knapsacks: A dictionary of the knapsacks.
|
|
:param capacity: The capacity of the knapsack.
|
|
:return: The optimal value.
|
|
"""
|
|
# num_knapsacks = len(knapsacks)
|
|
|
|
# Create a one-dimensional array to store intermediate solutions
|
|
dp = [0] * (capacity + 1)
|
|
|
|
for itemId, (weight, value) in knapsacks.items():
|
|
for w in range(capacity, weight - 1, -1):
|
|
dp[w] = max(dp[w], value + dp[w - weight])
|
|
|
|
return dp[capacity]
|
|
|
|
# KSP
|
|
def kspCheck(self, instance, solution):
|
|
"""Validates the solution for the KSP instance.
|
|
|
|
:param instance: A dictionary of the KSP instance.
|
|
:param solution: A dictionary of the solution.
|
|
:return: A tuple of (is_correct, message).
|
|
"""
|
|
# Change string key to integer key and value to boolean
|
|
items = instance.get('items', [])
|
|
knapsacks = {
|
|
item['id']: (item['weight'], item['value'])
|
|
for item in items
|
|
}
|
|
|
|
ksp_optimal_value = self.ksp_optimal_solution(
|
|
knapsacks, instance['knapsack_capacity'])
|
|
|
|
try:
|
|
is_feasible = (solution.get('Feasible', '').lower() == 'yes')
|
|
except Exception:
|
|
return False, f'Output format is incorrect.'
|
|
if is_feasible != (ksp_optimal_value > 0):
|
|
return False, f'The solution is {is_feasible} but the optimal solution is {ksp_optimal_value > 0}.'
|
|
|
|
total_value = int(solution.get('TotalValue', -1))
|
|
selectedItems = list(map(int, solution.get('SelectedItemIds', [])))
|
|
|
|
if len(set(selectedItems)) != len(selectedItems):
|
|
return False, f'Duplicate items are selected.'
|
|
|
|
total_weight = 0
|
|
cum_value = 0
|
|
|
|
# Calculate total weight and value of selected items
|
|
for item in selectedItems:
|
|
if knapsacks.get(item, False):
|
|
weight, value = knapsacks[item]
|
|
total_weight += weight
|
|
cum_value += value
|
|
else:
|
|
return False, f'Item {item} does not exist.'
|
|
|
|
# Check if the item weight exceeds the knapsack capacity
|
|
if total_weight > instance['knapsack_capacity']:
|
|
return False, f"Total weight {total_weight} exceeds knapsack capacity {instance['knapsack_capacity']}."
|
|
|
|
if total_value != cum_value:
|
|
return False, f'The total value {total_value} does not match the cumulative value {cum_value} of the selected items.'
|
|
|
|
if total_value != ksp_optimal_value:
|
|
return False, f'The total value {total_value} does not match the optimal value {ksp_optimal_value}.'
|
|
|
|
return True, f'The solution is valid with total weight {total_weight} and total value {total_value}.'
|