OpenCompass/configs/eval_subjective_corev2.py
bittersweet1999 77be07dbb5
[Fix] fix corev2 (#838)
* fix corev2

* fix corev2
2024-01-24 18:15:29 +08:00

98 lines
3.0 KiB
Python

from mmengine.config import read_base
with read_base():
from .models.qwen.hf_qwen_7b_chat import models as hf_qwen_7b_chat
from .models.qwen.hf_qwen_14b_chat import models as hf_qwen_14b_chat
from .models.chatglm.hf_chatglm3_6b import models as hf_chatglm3_6b
from .models.baichuan.hf_baichuan2_7b_chat import models as hf_baichuan2_7b
from .models.hf_internlm.hf_internlm2_chat_7b import models as internlm2_7b
from .models.hf_internlm.hf_internlm2_chat_20b import models as internlm2_20b
from .datasets.subjective.subjective_cmp.subjective_corev2 import subjective_datasets
datasets = [*subjective_datasets]
from opencompass.models import HuggingFaceCausalLM, HuggingFace, OpenAI
from opencompass.partitioners import NaivePartitioner, SizePartitioner
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
from opencompass.partitioners.sub_size import SubjectiveSizePartitioner
from opencompass.runners import LocalRunner
from opencompass.runners import SlurmSequentialRunner
from opencompass.tasks import OpenICLInferTask
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
from opencompass.summarizers import Corev2Summarizer
models = [*internlm2_7b, *internlm2_20b]
api_meta_template = dict(
round=[
dict(role='HUMAN', api_role='HUMAN'),
dict(role='BOT', api_role='BOT', generate=True)
],
reserved_roles=[
dict(role='SYSTEM', api_role='SYSTEM'),
],
)
infer = dict(
partitioner=dict(type=SizePartitioner, max_task_size=500),
runner=dict(
type=SlurmSequentialRunner,
partition='llm_dev2',
quotatype='auto',
max_num_workers=256,
task=dict(type=OpenICLInferTask)),
)
_meta_template = dict(
round=[
dict(role="HUMAN", begin='\n<|im_start|>user\n', end='<|im_end|>'),
dict(role="BOT", begin="\n<|im_start|>assistant\n", end='<|im_end|>', generate=True),
],
)
judge_model = dict(
type=HuggingFaceCausalLM,
abbr='qwen-7b-chat-hf',
path="Qwen/Qwen-7B-Chat",
tokenizer_path='Qwen/Qwen-7B-Chat',
model_kwargs=dict(
device_map='auto',
trust_remote_code=True
),
tokenizer_kwargs=dict(
padding_side='left',
truncation_side='left',
trust_remote_code=True,
use_fast=False,),
pad_token_id=151643,
max_out_len=2048,
max_seq_len=2048,
batch_size=8,
meta_template=_meta_template,
run_cfg=dict(num_gpus=1, num_procs=1),
)
eval = dict(
partitioner=dict(
type=SubjectiveSizePartitioner,
mode='m2n',
max_task_size=500,
base_models = [*internlm2_7b],
compare_models = [*internlm2_20b]
),
runner=dict(
type=SlurmSequentialRunner,
partition='llm_dev2',
quotatype='auto',
max_num_workers=256,
task=dict(
type=SubjectiveEvalTask,
judge_cfg=judge_model
)),
)
work_dir = 'outputs/corev2/'
summarizer = dict(
type=Corev2Summarizer,
match_method='smart',
)