mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
98 lines
3.0 KiB
Python
98 lines
3.0 KiB
Python
from mmengine.config import read_base
|
|
with read_base():
|
|
from .models.qwen.hf_qwen_7b_chat import models as hf_qwen_7b_chat
|
|
from .models.qwen.hf_qwen_14b_chat import models as hf_qwen_14b_chat
|
|
from .models.chatglm.hf_chatglm3_6b import models as hf_chatglm3_6b
|
|
from .models.baichuan.hf_baichuan2_7b_chat import models as hf_baichuan2_7b
|
|
from .models.hf_internlm.hf_internlm2_chat_7b import models as internlm2_7b
|
|
from .models.hf_internlm.hf_internlm2_chat_20b import models as internlm2_20b
|
|
from .datasets.subjective.subjective_cmp.subjective_corev2 import subjective_datasets
|
|
|
|
datasets = [*subjective_datasets]
|
|
|
|
from opencompass.models import HuggingFaceCausalLM, HuggingFace, OpenAI
|
|
from opencompass.partitioners import NaivePartitioner, SizePartitioner
|
|
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
|
|
from opencompass.partitioners.sub_size import SubjectiveSizePartitioner
|
|
from opencompass.runners import LocalRunner
|
|
from opencompass.runners import SlurmSequentialRunner
|
|
from opencompass.tasks import OpenICLInferTask
|
|
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
|
|
from opencompass.summarizers import Corev2Summarizer
|
|
models = [*internlm2_7b, *internlm2_20b]
|
|
|
|
api_meta_template = dict(
|
|
round=[
|
|
dict(role='HUMAN', api_role='HUMAN'),
|
|
dict(role='BOT', api_role='BOT', generate=True)
|
|
],
|
|
reserved_roles=[
|
|
dict(role='SYSTEM', api_role='SYSTEM'),
|
|
],
|
|
)
|
|
|
|
infer = dict(
|
|
partitioner=dict(type=SizePartitioner, max_task_size=500),
|
|
runner=dict(
|
|
type=SlurmSequentialRunner,
|
|
partition='llm_dev2',
|
|
quotatype='auto',
|
|
max_num_workers=256,
|
|
task=dict(type=OpenICLInferTask)),
|
|
)
|
|
|
|
|
|
_meta_template = dict(
|
|
round=[
|
|
dict(role="HUMAN", begin='\n<|im_start|>user\n', end='<|im_end|>'),
|
|
dict(role="BOT", begin="\n<|im_start|>assistant\n", end='<|im_end|>', generate=True),
|
|
],
|
|
)
|
|
|
|
|
|
judge_model = dict(
|
|
type=HuggingFaceCausalLM,
|
|
abbr='qwen-7b-chat-hf',
|
|
path="Qwen/Qwen-7B-Chat",
|
|
tokenizer_path='Qwen/Qwen-7B-Chat',
|
|
model_kwargs=dict(
|
|
device_map='auto',
|
|
trust_remote_code=True
|
|
),
|
|
tokenizer_kwargs=dict(
|
|
padding_side='left',
|
|
truncation_side='left',
|
|
trust_remote_code=True,
|
|
use_fast=False,),
|
|
pad_token_id=151643,
|
|
max_out_len=2048,
|
|
max_seq_len=2048,
|
|
batch_size=8,
|
|
meta_template=_meta_template,
|
|
run_cfg=dict(num_gpus=1, num_procs=1),
|
|
)
|
|
|
|
eval = dict(
|
|
partitioner=dict(
|
|
type=SubjectiveSizePartitioner,
|
|
mode='m2n',
|
|
max_task_size=500,
|
|
base_models = [*internlm2_7b],
|
|
compare_models = [*internlm2_20b]
|
|
),
|
|
runner=dict(
|
|
type=SlurmSequentialRunner,
|
|
partition='llm_dev2',
|
|
quotatype='auto',
|
|
max_num_workers=256,
|
|
task=dict(
|
|
type=SubjectiveEvalTask,
|
|
judge_cfg=judge_model
|
|
)),
|
|
)
|
|
work_dir = 'outputs/corev2/'
|
|
|
|
summarizer = dict(
|
|
type=Corev2Summarizer,
|
|
match_method='smart',
|
|
) |