mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00

* add TheoremQA with 5-shot * add huggingface_above_v4_33 classes * use num_worker partitioner in cli * update theoremqa * update TheoremQA * add TheoremQA * rename theoremqa -> TheoremQA * update TheoremQA output path * rewrite many model configs * update huggingface * further update * refine configs * update configs * update configs * add configs/eval_llama3_instruct.py * add summarizer multi faceted * update bbh datasets * update configs/models/hf_llama/lmdeploy_llama3_8b_instruct.py * rename class * update readme * update hf above v4.33
26 lines
664 B
Python
26 lines
664 B
Python
from opencompass.models import VLLM
|
|
|
|
|
|
_meta_template = dict(
|
|
round=[
|
|
dict(role="HUMAN", begin='<|im_start|>user\n', end='<|im_end|>\n'),
|
|
dict(role="BOT", begin="<|im_start|>assistant\n", end='<|im_end|>\n', generate=True),
|
|
],
|
|
)
|
|
|
|
models = [
|
|
dict(
|
|
type=VLLM,
|
|
abbr='qwen1.5-72b-chat-vllm',
|
|
path="Qwen/Qwen1.5-72B-Chat",
|
|
model_kwargs=dict(tensor_parallel_size=4),
|
|
meta_template=_meta_template,
|
|
max_out_len=100,
|
|
max_seq_len=2048,
|
|
batch_size=32,
|
|
generation_kwargs=dict(temperature=0),
|
|
end_str='<|im_end|>',
|
|
run_cfg=dict(num_gpus=4, num_procs=1),
|
|
)
|
|
]
|