OpenCompass/configs/eval_llama3_instruct.py
Fengzhe Zhou 7505b3cadf
[Feature] Add huggingface apply_chat_template (#1098)
* add TheoremQA with 5-shot

* add huggingface_above_v4_33 classes

* use num_worker partitioner in cli

* update theoremqa

* update TheoremQA

* add TheoremQA

* rename theoremqa -> TheoremQA

* update TheoremQA output path

* rewrite many model configs

* update huggingface

* further update

* refine configs

* update configs

* update configs

* add configs/eval_llama3_instruct.py

* add summarizer multi faceted

* update bbh datasets

* update configs/models/hf_llama/lmdeploy_llama3_8b_instruct.py

* rename class

* update readme

* update hf above v4.33
2024-05-14 14:50:16 +08:00

53 lines
3.3 KiB
Python

from mmengine.config import read_base
with read_base():
from .dataset_collections.chat_OC15 import datasets
from .models.hf_llama.hf_llama3_8b_instruct import models as hf_llama3_8b_instruct_model
from .summarizers.chat_OC15 import summarizer
work_dir = 'outputs/debug/llama3-instruct'
models = sum([v for k, v in locals().items() if k.endswith("_model")], [])
# dataset version metric mode llama-3-8b-instruct-hf
# -------------------- --------- ---------------------------- ------ ------------------------
# average - naive_average gen 55.64
# mmlu - naive_average gen 68.30
# cmmlu - naive_average gen 53.29
# ceval - naive_average gen 52.32
# GaokaoBench - weighted_average gen 45.91
# triviaqa_wiki_1shot eaf81e score gen 79.01
# nq_open_1shot 01cf41 score gen 30.25
# race-high 9a54b6 accuracy gen 81.22
# winogrande b36770 accuracy gen 66.46
# hellaswag e42710 accuracy gen 74.33
# bbh - naive_average gen 67.25
# gsm8k 1d7fe4 accuracy gen 79.08
# math 393424 accuracy gen 27.78
# TheoremQA 6f0af8 score gen 19.50
# openai_humaneval 8e312c humaneval_pass@1 gen 55.49
# sanitized_mbpp 830460 score gen 66.54
# GPQA_diamond 4baadb accuracy gen 25.76
# IFEval 3321a3 Prompt-level-strict-accuracy gen 67.84
# - - - -
# mmlu - naive_average gen 68.30
# mmlu-stem - naive_average gen 57.92
# mmlu-social-science - naive_average gen 77.83
# mmlu-humanities - naive_average gen 71.20
# mmlu-other - naive_average gen 71.79
# cmmlu - naive_average gen 53.29
# cmmlu-stem - naive_average gen 45.40
# cmmlu-social-science - naive_average gen 54.63
# cmmlu-humanities - naive_average gen 54.14
# cmmlu-other - naive_average gen 59.52
# cmmlu-china-specific - naive_average gen 49.33
# ceval - naive_average gen 52.32
# ceval-stem - naive_average gen 48.16
# ceval-social-science - naive_average gen 57.50
# ceval-humanities - naive_average gen 53.26
# ceval-other - naive_average gen 54.26
# ceval-hard - naive_average gen 35.59