mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00

* add TheoremQA with 5-shot * add huggingface_above_v4_33 classes * use num_worker partitioner in cli * update theoremqa * update TheoremQA * add TheoremQA * rename theoremqa -> TheoremQA * update TheoremQA output path * rewrite many model configs * update huggingface * further update * refine configs * update configs * update configs * add configs/eval_llama3_instruct.py * add summarizer multi faceted * update bbh datasets * update configs/models/hf_llama/lmdeploy_llama3_8b_instruct.py * rename class * update readme * update hf above v4.33
57 lines
2.1 KiB
Python
57 lines
2.1 KiB
Python
import os
|
|
from mmengine.config import read_base
|
|
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
|
from opencompass.openicl.icl_retriever import ZeroRetriever
|
|
from opencompass.openicl.icl_inferencer import GenInferencer
|
|
from opencompass.datasets import BBHDataset, bbh_mcq_postprocess, BBHEvaluator, BBHEvaluator_mcq
|
|
|
|
with read_base():
|
|
from .bbh_subset_settings import settings
|
|
|
|
bbh_datasets = []
|
|
for name, test_type in settings:
|
|
with open(os.path.join(os.path.dirname(__file__), 'lib_prompt', f'{name}.txt'), 'r') as f:
|
|
hint = f.read()
|
|
|
|
task_prompt, body = hint.split('\n\nQ:', 1)
|
|
sections = ('Q:' + body).split('\n\n')
|
|
prompt_rounds = []
|
|
for index, section in enumerate(sections):
|
|
question, answer = section.split('\nA:')
|
|
answer = 'A:' + answer
|
|
if index == 0:
|
|
desc = task_prompt.strip() + '\n'
|
|
else:
|
|
desc = ''
|
|
prompt_rounds.append(dict(role="HUMAN", prompt=f"{desc}{question.strip()}"))
|
|
prompt_rounds.append(dict(role="BOT", prompt=answer.strip()))
|
|
prompt_rounds.append(dict(role="HUMAN", prompt="Q: {input}"))
|
|
|
|
bbh_reader_cfg = dict(input_columns=["input"], output_column="target")
|
|
|
|
bbh_infer_cfg = dict(
|
|
prompt_template=dict(type=PromptTemplate, template=dict(round=prompt_rounds)),
|
|
retriever=dict(type=ZeroRetriever),
|
|
inferencer=dict(type=GenInferencer, max_out_len=512))
|
|
|
|
if test_type == 'mcq':
|
|
bbh_eval_cfg = dict(
|
|
evaluator=dict(type=BBHEvaluator_mcq),
|
|
pred_role="BOT",
|
|
pred_postprocessor=dict(type=bbh_mcq_postprocess),
|
|
dataset_postprocessor=dict(type=bbh_mcq_postprocess))
|
|
else:
|
|
bbh_eval_cfg = dict(
|
|
evaluator=dict(type=BBHEvaluator),
|
|
pred_role="BOT")
|
|
|
|
bbh_datasets.append(
|
|
dict(
|
|
type=BBHDataset,
|
|
path="./data/BBH/data",
|
|
name=name,
|
|
abbr='bbh-' + name,
|
|
reader_cfg=bbh_reader_cfg.copy(),
|
|
infer_cfg=bbh_infer_cfg.copy(),
|
|
eval_cfg=bbh_eval_cfg.copy()))
|