OpenCompass/configs/datasets/bbh/bbh_gen_2879b0.py
Fengzhe Zhou 7505b3cadf
[Feature] Add huggingface apply_chat_template (#1098)
* add TheoremQA with 5-shot

* add huggingface_above_v4_33 classes

* use num_worker partitioner in cli

* update theoremqa

* update TheoremQA

* add TheoremQA

* rename theoremqa -> TheoremQA

* update TheoremQA output path

* rewrite many model configs

* update huggingface

* further update

* refine configs

* update configs

* update configs

* add configs/eval_llama3_instruct.py

* add summarizer multi faceted

* update bbh datasets

* update configs/models/hf_llama/lmdeploy_llama3_8b_instruct.py

* rename class

* update readme

* update hf above v4.33
2024-05-14 14:50:16 +08:00

57 lines
2.1 KiB
Python

import os
from mmengine.config import read_base
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import BBHDataset, bbh_mcq_postprocess, BBHEvaluator, BBHEvaluator_mcq
with read_base():
from .bbh_subset_settings import settings
bbh_datasets = []
for name, test_type in settings:
with open(os.path.join(os.path.dirname(__file__), 'lib_prompt', f'{name}.txt'), 'r') as f:
hint = f.read()
task_prompt, body = hint.split('\n\nQ:', 1)
sections = ('Q:' + body).split('\n\n')
prompt_rounds = []
for index, section in enumerate(sections):
question, answer = section.split('\nA:')
answer = 'A:' + answer
if index == 0:
desc = task_prompt.strip() + '\n'
else:
desc = ''
prompt_rounds.append(dict(role="HUMAN", prompt=f"{desc}{question.strip()}"))
prompt_rounds.append(dict(role="BOT", prompt=answer.strip()))
prompt_rounds.append(dict(role="HUMAN", prompt="Q: {input}"))
bbh_reader_cfg = dict(input_columns=["input"], output_column="target")
bbh_infer_cfg = dict(
prompt_template=dict(type=PromptTemplate, template=dict(round=prompt_rounds)),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512))
if test_type == 'mcq':
bbh_eval_cfg = dict(
evaluator=dict(type=BBHEvaluator_mcq),
pred_role="BOT",
pred_postprocessor=dict(type=bbh_mcq_postprocess),
dataset_postprocessor=dict(type=bbh_mcq_postprocess))
else:
bbh_eval_cfg = dict(
evaluator=dict(type=BBHEvaluator),
pred_role="BOT")
bbh_datasets.append(
dict(
type=BBHDataset,
path="./data/BBH/data",
name=name,
abbr='bbh-' + name,
reader_cfg=bbh_reader_cfg.copy(),
infer_cfg=bbh_infer_cfg.copy(),
eval_cfg=bbh_eval_cfg.copy()))