OpenCompass/opencompass/openicl/icl_evaluator/icl_base_evaluator.py
Junnan Liu 73c80953c6
[Feature] Support Dataset Repeat and G-Pass Compute for Each Evaluator (#1886)
* support dataset repeat and g-pass compute for each evaluator

* fix pre-commit errors

* delete print

* delete gpassk_evaluator and fix potential errors

* change `repeat` to `n`

* fix `repeat` to `n` in openicl_eval

* update doc for multi-run and g-pass

* update latex equation in doc

* update eng doc for multi-run and g-pass

* update datasets.md

* update datasets.md

* fix multi-line equation

* fix multi-line equation

* fix multi-line equation

* fix multi-line equation

* fix multi-line equation

* fix multi-line equation

* fix multi-line equation in zh_cn user_guides

* mmodify pre-commit-zh-cn

* recover pre-commit and edit math expr in doc

* del [TIP]

* del cite tag in doc

* del extract_model param in livemathbench config
2025-02-26 19:43:12 +08:00

177 lines
6.6 KiB
Python

"""Base Evaluator."""
from collections import OrderedDict
from copy import deepcopy
from typing import Any, Dict, Iterable, List, Union
import numpy as np
from datasets import Dataset
from scipy.stats import hypergeom
def compute_pass_at_k(n, c, k):
if n - c < k:
return 1.0
return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1, n + 1))
def _compute_g_pass_at_k(n, c, k, m):
if m > min(c, k) or k > n or c < 0 or n <= 0 or m < 0:
return 0.0
return hypergeom.sf(m - 1, n, c, k)
def compute_g_pass_at_k(n, c, k, t):
m = max(int(np.ceil(k * t)), 1)
return _compute_g_pass_at_k(n, c, k, m)
def compute_mg_pass_at_k(n, c, k):
l, r = int(np.ceil(k * 0.5)), k
mg_pass_at_k = 0.0
for i in range(l + 1, r + 1):
mg_pass_at_k += _compute_g_pass_at_k(n, c, k, i)
mg_pass_at_k = 2 * mg_pass_at_k / k
return mg_pass_at_k
class BaseEvaluator:
def __init__(self) -> None:
pass
@property
def output_dir(self):
# please see opencompass/opencompass/tasks/openicl_eval.py Line 197-200
return self._out_dir
def group(self, n: int, details: List[Dict[str, Any]],
test_set: Dataset) -> Dict[str, Any]:
example2replications = {}
for detail, example in zip(details, test_set):
example_abbr = f"{example['subdivision']}_{example['idx']}"
if example_abbr not in example2replications:
example2replications[example_abbr] = []
example.update({'detail': detail})
example2replications[example_abbr].append(example)
for _, replications in example2replications.items():
assert len(replications) == n, print(len(replications), n)
return example2replications
def reduce(self, details: List[Dict[str, Any]]) -> Dict[str, Any]:
g_passk_details = OrderedDict()
all_subdivisions = set(
[detail['example_abbr'].split('_')[0] for detail in details])
all_metrics = list(details[0].keys())
for subdivision in sorted(list(all_subdivisions)):
for metric in all_metrics:
if metric in ['predictions', 'example_abbr']:
continue
g_passk_details[f'{subdivision}/{metric}'] = 100 * np.mean([
detail[metric] for detail in details
if detail['example_abbr'].split('_')[0] == subdivision
])
for metric in all_metrics:
if metric in ['predictions', 'example_abbr']:
continue
g_passk_details[metric] = 100. * np.mean(
[detail[metric] for detail in details])
return g_passk_details
def evaluate(self, k: Union[int, List[int]], n: int,
original_dataset: Dataset, **score_kwargs):
real_size = len(original_dataset) // n
all_details = []
all_results = []
for i in range(n):
def select_fn(i, real_size, x):
if isinstance(x, Dataset):
return x.select(range(i * real_size, (i + 1) * real_size))
elif isinstance(x, Iterable):
return x[i * real_size:(i + 1) * real_size]
else:
return x
results = self.score(
**{
key: select_fn(i, real_size, value)
for key, value in score_kwargs.items()
})
details = results.pop('details', None)
if details is not None:
if isinstance(details, Dict):
details = list(details.values())
all_details.extend(details)
all_results.append(results)
eval_results = {}
for single_results in all_results:
for key in single_results:
if key not in eval_results:
eval_results[key] = []
eval_results[key].append(single_results[key])
for key in deepcopy(eval_results):
if isinstance(eval_results[key][0], float) or isinstance(
eval_results[key][0], int):
if n > 1:
eval_results[key + f' ({n} runs average)'] = np.mean(
eval_results[key])
eval_results.pop(key)
else:
eval_results[key] = np.mean(eval_results[key])
else:
eval_results[key] = eval_results[key][0]
grouped_examples = self.group(n, all_details, original_dataset)
can_calculate = False
if len(all_details) != 0:
eval_details = []
for example_abbr, examples in grouped_examples.items():
detail = {'predictions': [], 'example_abbr': example_abbr}
c = 0
for example in examples:
detail['predictions'].append(example['detail'])
# only compute G-Pass@k when details have correct labels
if example['detail'].get('correct', None) is not None:
can_calculate = True
c += int(example['detail']['correct'])
elif example['detail'].get('is_correct', None) is not None:
can_calculate = True
c += int(example['detail']['is_correct'])
if can_calculate and n > 1 and k > 1:
thresholds = [0.0, 0.25, 0.5, 0.75, 1.0]
for _k in ([k] if isinstance(k, int) else k):
for threshold in thresholds:
g_pass = compute_g_pass_at_k(n=n,
c=c,
k=_k,
t=threshold)
detail[f'G-Pass@{_k}_{threshold}'] = g_pass
detail[f'mG-Pass@{_k}'] = compute_mg_pass_at_k(n=n,
c=c,
k=_k)
eval_details.append(detail)
if can_calculate and n > 1 and k > 1:
eval_results.update(self.reduce(eval_details))
eval_results['details'] = eval_details
return eval_results
def score(self):
raise NotImplementedError("Method hasn't been implemented yet")
@staticmethod
def is_num_equal(predictions, references):
if len(predictions) != len(references):
return {'error': 'preds and refrs have different length'}
else:
return