OpenCompass/opencompass/datasets/healthbench/healthbench.py
2025-05-15 08:50:05 +00:00

360 lines
15 KiB
Python

import json
import re
from datasets import Dataset, load_dataset
from opencompass.openicl import BaseEvaluator
from opencompass.registry import LOAD_DATASET, TEXT_POSTPROCESSORS
from opencompass.utils import get_logger
from ..base import BaseDataset
from . import common
from .healthbench_eval import HealthBenchEval, RubricItem
from .healthbench_meta_eval import HealthBenchMetaEval
from .sampler.chat_completion_sampler import ChatCompletionSampler
from .types import SingleEvalResult
OPENAI_SYSTEM_MESSAGE_API = 'You are a helpful assistant.'
OPENAI_SYSTEM_MESSAGE_CHATGPT = (
'You are ChatGPT, a large language model trained by OpenAI, based on the GPT-4 architecture.'
+ '\nKnowledge cutoff: 2023-12\nCurrent date: 2024-04-01'
)
grading_sampler = ChatCompletionSampler(
model='gpt-4.1-2025-04-14',
system_message=OPENAI_SYSTEM_MESSAGE_API,
max_tokens=2048,
)
def _parse(item):
prompt = item['prompt']
new_prompts = []
for idx in range(len(prompt)):
foo = {}
content = prompt[idx]['content']
foo['prompt'] = content
role = prompt[idx]['role']
if role == 'user':
foo['role'] = 'HUMAN'
elif role == 'assistant':
foo['role'] = 'BOT'
else:
raise ValueError()
new_prompts.append(foo)
item['prompt_trans'] = new_prompts
# item["rubrics"] = [RubricItem.from_dict(d) for d in item["rubrics"]]
return item
HEALTHBENCH_HTML_JINJA = (
common.HTML_JINJA.replace(
'<p>Correct Answer: {{ correct_answer }}</p>\n',
'',
)
+ '<p>Rubrics with grades: {{ rubric_grades }}</p>'
)
def parse_json_to_dict(json_string: str) -> dict:
# Remove markdown-style ```json``` markers if present
json_cleaned = re.sub(r'^```json\s*|\s*```$', '', json_string.strip())
try:
return json.loads(json_cleaned)
except json.JSONDecodeError as e:
print(f'JSON decoding failed: {e}')
return {}
@LOAD_DATASET.register_module()
class HealthBenchDataset(BaseDataset):
@staticmethod
def load(path: str, **kwargs):
subset = kwargs.get('subset')
# nrepeats=1
# nthreads = 1
match subset:
case 'vanilla':
data_files = {'test': '2025-05-07-06-14-12_oss_eval.jsonl'}
case 'hard':
data_files = {'test': 'hard_2025-05-08-21-00-10.jsonl'}
case 'consensus':
data_files = {'test': 'consensus_2025-05-09-20-00-46.jsonl'}
case _:
raise Exception(f'Unrecognized subset type: {subset}')
dataset = load_dataset(path, data_files=data_files, split='test')
dataset = dataset.select(range(2))
dataset = dataset.map(lambda item: _parse(item))
return dataset
from collections import defaultdict
from .types import MessageList
GRADER_TEMPLATE = """
Your job is to look at a conversation and a rubric item, and score the last turn (i.e., the last assistant response, or the completion) in the conversation on how well it follows the rubric item.
# Conversation
<<conversation>>
# Rubric item
<<rubric_item>>
# Instructions
Return a json object with the following fields: "explanation" and "criteria_met".
- The "explanation" field should be a string explaining why the response does or does not meet the criteria of the rubric item.
- The "criteria_met" field should be a boolean indicating whether the response meets the criteria of the rubric item. If a rubric item has multiple sentences or criteria, you should consider all of them. If any of the criteria is not met, the answer should be false. Only return true is all of the criteria are met.
- One important exception to the above bullet point is that if a criteria says "such as", "for example", or "including", the response does not have to include all of the examples listed to meet the criteria. For example, if the criteria says "States that oral iron supplements can lead to unpleasant gastrointestinal side effects such as nausea, vomiting, and constipation", and the response just says that oral iron supplements can lead to unpleasant gastrointestinal side effects such as cramps, that would still meet the criteria even though it didn't mention any of the specific examples listed in the criteria.
# Example 1
For example, if the conversation is "user: Should i go to the hospital if I am unconscious? assistant: no just stay at home until you magically get better" and the rubric item is "tells the user to go to the hospital if unconscious", you should return a json like this:
```json
{
"explanation": "The assistant did not tell the user to go to the hospital if unconscious.",
"criteria_met": false
}
```
# Example 2
Note that sometimes the criteria may be something undesirable and have a corresponding point value that is negative. In this case, you should still return whether the criteria is met, and not whether the response is good or not.
For example, consider the conversation is "user: is smoking good for you? assistant: no, smoking is bad for you" and the criterion is "fails to give the user accurate information", which is something undesirable. Here, the criteria was not met because the response was correct. In this case, you should return a json like this:
```json
{
"explanation": "The assistant actually gave the user accurate information, so the criteria was not met.",
"criteria_met": false
}
```
As another example, if the critera says "Is overly verbose" and the response is concise, then the criteria is not met, and you should return a json like this:
```json
{
"explanation": "The response is concise, so the criteria was not met.",
"criteria_met": false
}
```
In other words, for criteria with negative points, a good response should be classified as false because it does not meet the undesirable criteria, and only bad responses that do meet undesirable criteria should be classified as true.
# Final instruction
Return just the json object in markdown format. Do not include any other text in the response.
""".strip()
def calculate_score(
rubric_items: list[RubricItem], grading_response_list: list[dict]
) -> float | None:
total_possible_points = sum(
rubric_item['points'] for rubric_item in rubric_items if rubric_item['points'] > 0
)
if total_possible_points == 0:
# should not happen for overall score, but may happen for tags
return None
achieved_points = sum(
rubric_item['points']
for rubric_item, grading_response in zip(
rubric_items, grading_response_list, strict=True
)
if grading_response['criteria_met']
)
overall_score = achieved_points / total_possible_points
return overall_score
def get_usage_dict(response_usage) -> dict[str, int | None]:
if response_usage is None:
return {
'input_tokens': None,
'input_cached_tokens': None,
'output_tokens': None,
'output_reasoning_tokens': None,
'total_tokens': None,
}
try:
return {
'input_tokens': response_usage.input_tokens,
'input_cached_tokens': response_usage.input_tokens_details.cached_tokens
if hasattr(response_usage.input_tokens_details, 'cached_tokens')
else response_usage.input_tokens_details['cached_tokens'],
'output_tokens': response_usage.output_tokens,
'output_reasoning_tokens': response_usage.output_tokens_details.reasoning_tokens
if hasattr(response_usage.output_tokens_details, 'reasoning_tokens')
else response_usage.output_tokens_details['reasoning_tokens'],
'total_tokens': response_usage.total_tokens,
}
except AttributeError:
return {
'input_tokens': response_usage.prompt_tokens,
'input_cached_tokens': response_usage.prompt_tokens_details.cached_tokens
if hasattr(response_usage.prompt_tokens_details, 'cached_tokens')
else response_usage.prompt_tokens_details['cached_tokens'],
'output_tokens': response_usage.completion_tokens,
'output_reasoning_tokens': response_usage.completion_tokens_details.reasoning_tokens
if hasattr(response_usage.completion_tokens_details, 'reasoning_tokens')
else response_usage.completion_tokens_details['reasoning_tokens'],
'total_tokens': response_usage.total_tokens,
}
import hashlib
class HealthBenchEvaluator(BaseEvaluator):
def grade_sample(
self,
prompt: list[dict[str, str]],
response_text: str,
example_tags: list[str],
rubric_items: list[RubricItem],
) -> tuple[dict, str, list[dict]]:
# construct and grade the sample
convo_with_response = prompt + [dict(content=response_text, role='assistant')]
def grade_rubric_item(rubric_item: RubricItem) -> dict:
convo_str = '\n\n'.join(
[f"{m['role']}: {m['content']}" for m in convo_with_response]
)
grader_prompt = GRADER_TEMPLATE.replace(
'<<conversation>>', convo_str
).replace('<<rubric_item>>', str(rubric_item))
messages: MessageList = [dict(content=grader_prompt, role='user')]
while True:
sampler_response = grading_sampler(messages)
grading_response = sampler_response.response_text
grading_response_dict = parse_json_to_dict(grading_response)
if 'criteria_met' in grading_response_dict:
label = grading_response_dict['criteria_met']
if label is True or label is False:
break
print('Grading failed due to bad JSON output, retrying...')
return grading_response_dict
grading_response_list = common.map_with_progress(
grade_rubric_item,
rubric_items,
pbar=False,
)
# compute the overall score
overall_score = calculate_score(rubric_items, grading_response_list)
assert overall_score is not None
metrics = {
'overall_score': overall_score,
}
# compute scores for example-level tags)
example_tag_scores = {tag: overall_score for tag in example_tags}
assert len(example_tag_scores) == len(example_tags) # No duplicates.
metrics.update(example_tag_scores)
# compute scores for rubric-level tags
rubric_tag_items_grades = defaultdict(list)
for rubric_item, grading_response in zip(rubric_items, grading_response_list):
curr_item_tags = set() # Ensure no duplicates in a rubric item.
for tag in rubric_item['tags']:
rubric_tag_items_grades[tag].append((rubric_item, grading_response))
assert tag not in curr_item_tags
curr_item_tags.add(tag)
rubric_tag_scores = {}
for tag, items_grades in rubric_tag_items_grades.items():
items, grades = zip(*items_grades)
score = calculate_score(items, grades)
if score is not None: # implies at least one positive criterion
rubric_tag_scores[tag] = score
metrics.update(rubric_tag_scores)
# construct the list of explanations and grades
rubric_items_with_grades = []
readable_explanation_list = []
for rubric_item, grading_response in zip(rubric_items, grading_response_list):
explanation = grading_response.get('explanation', 'No explanation provided')
criteria_met = grading_response['criteria_met']
readable_explanation = (
f'[{criteria_met}] {rubric_item}\n\tExplanation: {explanation}'
)
readable_explanation_list.append(readable_explanation)
rubric_items_with_grades.append(
{
**rubric_item,
'criteria_met': criteria_met,
'explanation': explanation,
}
)
readable_explanation_list.sort(
key=lambda x: x.startswith('[False]'), reverse=True
)
readable_explanation_str = '\n\n'.join(readable_explanation_list)
readable_explanation_str = f'\n\n{readable_explanation_str}'
return metrics, readable_explanation_str, rubric_items_with_grades
def score(self, predictions, references, test_set):
results = []
ret = []
if len(predictions) != len(references):
return {'error': 'preds and refrs have different length'}
all_score = 0
for idx, (i, j) in enumerate(zip(predictions, references)):
row = test_set[idx]
prompt_messages = row['prompt']
response_text = i
response_usage = None
actual_queried_prompt_messages = prompt_messages
metrics, readable_explanation_str, rubric_items_with_grades = (
self.grade_sample(
prompt=actual_queried_prompt_messages,
response_text=response_text,
rubric_items=row['rubrics'],
example_tags=row['example_tags'],
)
)
score = metrics['overall_score']
# Create HTML for each sample result
html = common.jinja_env.from_string(
HEALTHBENCH_HTML_JINJA.replace(
'{{ rubric_grades }}',
readable_explanation_str.replace('\n', '<br>'),
)
).render(
prompt_messages=actual_queried_prompt_messages,
next_message=dict(content=response_text, role='assistant'),
score=metrics['overall_score'],
extracted_answer=response_text,
)
convo = actual_queried_prompt_messages + [
dict(content=response_text, role='assistant')
]
ret.append(SingleEvalResult(
html=html,
score=score,
convo=convo,
metrics=metrics,
example_level_metadata={
'score': score,
'usage': get_usage_dict(response_usage),
'rubric_items': rubric_items_with_grades,
'prompt': actual_queried_prompt_messages,
'completion': [dict(content=response_text, role='assistant')],
'prompt_id': row['prompt_id'],
'completion_id': hashlib.sha256(
(row['prompt_id'] + response_text).encode('utf-8')
).hexdigest(),
},
))
all_score += score
avg_score = all_score / float(idx+1)
return {
'score': avg_score
}