OpenCompass/opencompass/utils/postprocessors/naive/extractor.py
liushz 2e9db77d57
[Feature] Add custom model postprocess function (#1519)
Co-authored-by: liushz <liuhongwei@pjlab.rog.cn>
2024-09-18 14:40:51 +08:00

122 lines
5.4 KiB
Python

# Naive model extractor for OpenCompass, modified from xFinder: https://github.com/IAAR-Shanghai/xFinder # noqa
import json
import time
from logging import getLogger
from openai import OpenAI
Meta_Instruction = """I will provide you with a question, output sentences along with an answer range. The output sentences are the response of the question provided. The answer range could either describe the type of answer expected or list all possible valid answers. Using the information provided, you must accurately and precisely determine and extract the intended key answer from the output sentences. Please don't have your subjective thoughts about the question.
First, you need to determine whether the content of the output sentences is relevant to the given question. If the entire output sentences are unrelated to the question (meaning the output sentences are not addressing the question), then output [No valid answer].
Otherwise, ignore the parts of the output sentences that have no relevance to the question and then extract the key answer that matches the answer range.
Below are some special cases you need to be aware of:
(1) If the output sentences present multiple different answers, carefully determine if the later provided answer is a correction or modification of a previous one. If so, extract this corrected or modified answer as the final response. Conversely, if the output sentences fluctuate between multiple answers without a clear final answer, you should output [No valid answer].
(2) If the answer range is a list and the key answer in the output sentences is not explicitly listed among the candidate options in the answer range, also output [No valid answer].
(3) You should only return the precise answer you extract, without processing the answer. Please return only the answer and do not add any additional content.
""" # noqa
def format_input_naive(data):
format_data = []
for item in data:
template = {}
question = item['origin_prompt'][-1]['prompt']
llm_output = item['prediction']
correct_answer = item['reference'] if item['reference'] else item[
'gold']
template['correct_answer'] = correct_answer
template['question'] = question
template['llm_output'] = llm_output
format_data.append(template)
return format_data
class NaiveExtractor:
def __init__(
self,
model_name,
model_path=None,
url=None,
temperature=0,
max_tokens=3000,
api_key='EMPTY',
SYSTEM='You are a help assistant tasked with extracting the precise key answer from given output sentences. You must only provide the extracted key answer without including any additional text.', # noqa
custom_instruction=''):
self.model_name = model_name
self.SYSTEM = SYSTEM
self.model_path = model_path
self.url = url
self.api_key = api_key
self.temperature = temperature
self.max_tokens = max_tokens
self.custom_instruction = custom_instruction
self.logger = getLogger(__name__)
def prepare_input(self, item):
user_input = Meta_Instruction + self.custom_instruction + \
"Question: \"\"\"" + item['question'] + "\"\"\"\n\n" + \
"Output sentences: \"\"\"" + item['llm_output'] + "\"\"\"\n\n" + \
'Key extracted answer: '
return user_input
def gen_output(self, query):
return self.openai_infer(query)
def openai_infer(self, query: str, retry=9) -> str:
"""Perform inference on the OpenAI model.
Args:
query (str): The input query.
Returns:
str: The extracted answer (xFinder's output).
"""
if isinstance(self.url, list):
# Randomly api for better load balancing
import random
self.url = random.choice(self.url)
self.client = OpenAI(
api_key=self.api_key,
base_url=self.url,
)
self.retry = retry
t = time.time()
retry = self.retry
response = ''
while retry > 0:
try:
chat_response = self.client.chat.completions.create(
model=self.client.models.list().data[0].id
if self.model_name == '' else self.model_name,
messages=[
{
'role': 'system',
'content': self.SYSTEM
},
{
'role': 'user',
'content': query
},
],
temperature=self.temperature,
max_tokens=self.max_tokens,
)
js_response = json.loads(chat_response.model_dump_json())
response = js_response['choices'][0]['message']['content']
break
except Exception as e:
self.logger.info(f'Error: {e}')
self.logger.info(f'{self.url} is down. Retrying...')
self.logger.info(f'Time elapsed: {time.time() - t} seconds')
time.sleep(6)
retry -= 1
if retry == 0:
response = 'Error: Failed to get response.'
self.logger.info(f'{response} after {self.retry} tries.')
raise ValueError('The api is down')
return response.strip()