mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00

* fix pip version * fix pip version * reorganize subjective eval * reorg sub * reorg subeval * reorg subeval * update subjective doc * reorg subeval * reorg subeval
157 lines
5.7 KiB
Python
157 lines
5.7 KiB
Python
# flake8: noqa
|
|
# yapf: disable
|
|
import csv
|
|
import os
|
|
import os.path as osp
|
|
import re
|
|
from collections import defaultdict
|
|
from datetime import datetime
|
|
|
|
import numpy as np
|
|
from mmengine import ConfigDict
|
|
from tabulate import tabulate
|
|
|
|
from opencompass.utils import model_abbr_from_cfg
|
|
|
|
from .compass_arena import CompassArenaSummarizer
|
|
from .utils import get_judgeanswer_and_reference, get_outdir
|
|
|
|
COLUMNS = ['total', 'writing', 'roleplay', 'reasoning', 'math', 'coding', 'extraction', 'stem', 'humanities']
|
|
|
|
def model_abbr_from_cfg_used_in_summarizer(model):
|
|
if model.get('summarizer_abbr', None):
|
|
return model['summarizer_abbr']
|
|
else:
|
|
return model_abbr_from_cfg(model)
|
|
|
|
def post_process_mtbench_pair(judgement: str):
|
|
"""Input a string like below:
|
|
|
|
xxx[[A]]xxx, and extract the judge
|
|
"""
|
|
pattern = r'\[([A-C]+)\]'
|
|
matched_result = re.findall(pattern, judgement)
|
|
if matched_result:
|
|
return matched_result[0]
|
|
else:
|
|
return None
|
|
|
|
|
|
def post_process_mtbench_single(judgement: str):
|
|
"""Input a string like below:
|
|
|
|
xxx[[5]]xxx, and extract the score
|
|
"""
|
|
pattern = r'Rating:\s*\[\[([\d.]+)\]\]'
|
|
matched_result = re.findall(pattern, judgement)
|
|
if matched_result:
|
|
score = float(matched_result[0])
|
|
else:
|
|
return None
|
|
return {'score': score}
|
|
|
|
|
|
def get_capability_results(
|
|
judged_answers,
|
|
references,
|
|
fout,
|
|
fout_flag,
|
|
model_abbr,
|
|
):
|
|
columns = COLUMNS
|
|
capability_ratings = defaultdict(int)
|
|
capability_counts = defaultdict(int)
|
|
capability_avg_ratings = defaultdict(float)
|
|
if len(judged_answers) == 0:
|
|
for column in columns:
|
|
capability_avg_ratings[column] = ''
|
|
else:
|
|
for ans, ref in zip(judged_answers, references):
|
|
capability_ratings['total'] += ans['score']
|
|
capability_counts['total'] += 1
|
|
capability_ratings[ref['capability']] += ans['score']
|
|
capability_counts[ref['capability']] += 1
|
|
|
|
for capability, total_score in capability_ratings.items():
|
|
s = total_score / capability_counts[capability]
|
|
s = round(s, 2)
|
|
capability_avg_ratings[capability] = s
|
|
|
|
with open(fout, 'a+', newline='') as csvfile:
|
|
writer = csv.writer(csvfile)
|
|
if fout_flag == 0:
|
|
writer.writerow(['model'] + columns)
|
|
writer.writerow([model_abbr] + [capability_avg_ratings[column] for column in columns])
|
|
|
|
|
|
class MTBenchSummarizer(CompassArenaSummarizer):
|
|
"""Do the subjectivity analyze based on evaluation results.
|
|
|
|
Args:
|
|
config (ConfigDict): The configuration object of the evaluation task.
|
|
It's expected to be filled out at runtime.
|
|
"""
|
|
|
|
def __init__(self, config: ConfigDict, judge_type='single') -> None:
|
|
self.judge_type = judge_type
|
|
self.tasks = []
|
|
self.cfg = config
|
|
if self.judge_type == 'single':
|
|
self.eval_model_cfgs = self.cfg['eval']['partitioner']['models']
|
|
elif self.judge_type == 'pair':
|
|
self.base_models = self.cfg['eval']['partitioner']['base_models']
|
|
self.compare_models = self.cfg['eval']['partitioner']['compare_models']
|
|
self.judge_models = self.cfg.get('judge_models', None)
|
|
self.judge_map = {
|
|
'single': post_process_mtbench_single,
|
|
'pair': post_process_mtbench_pair
|
|
}
|
|
self.judge_function = self.judge_map[self.judge_type]
|
|
|
|
def summarize(self, time_str: str = datetime.now().strftime('%Y%m%d_%H%M%S')):
|
|
"""Summarize the subjectivity analysis based on evaluation results.
|
|
|
|
Args:
|
|
time_str (str): Timestamp for file naming.
|
|
|
|
Returns:
|
|
pd.DataFrame: The summary results.
|
|
"""
|
|
if self.judge_type == 'pair':
|
|
return super().summarize()
|
|
|
|
# self.judge_type == 'single'
|
|
dataset_cfgs = self.cfg['datasets']
|
|
output_dir, results_folder = get_outdir(self.cfg, time_str)
|
|
all_scores = {}
|
|
for judge_model in self.judge_models:
|
|
fout_flag = 0
|
|
score_by_judgemodel = {}
|
|
judge_abbr = model_abbr_from_cfg(judge_model)
|
|
for eval_model_cfg in self.eval_model_cfgs:
|
|
eval_model_abbr = model_abbr_from_cfg(eval_model_cfg)
|
|
show_model_abbr = model_abbr_from_cfg_used_in_summarizer(eval_model_cfg)
|
|
subdir_path = os.path.join(results_folder, eval_model_abbr + '_judged-by--' + judge_abbr)
|
|
if os.path.isdir(subdir_path):
|
|
fout = osp.join(output_dir, 'MTBench-judged-by--' + judge_abbr + '-capability.csv')
|
|
overall_judged_answers, overall_references = [], []
|
|
for dataset in dataset_cfgs:
|
|
judged_answers, references = get_judgeanswer_and_reference(dataset, subdir_path, self.judge_function)
|
|
overall_judged_answers += judged_answers
|
|
overall_references += references
|
|
get_capability_results(overall_judged_answers, overall_references, fout, fout_flag, show_model_abbr)
|
|
fout_flag += 1
|
|
else:
|
|
print(subdir_path + ' is not exist! please check!')
|
|
with open(fout, 'r') as f:
|
|
csv_reader = csv.reader(f)
|
|
header = next(csv_reader)
|
|
table = [line for line in csv_reader]
|
|
|
|
for model_score in table:
|
|
score_by_judgemodel[model_score[0]] = {}
|
|
for idx, column in enumerate(COLUMNS):
|
|
score_by_judgemodel[model_score[0]][column] = model_score[idx+1]
|
|
all_scores[judge_abbr] = score_by_judgemodel
|
|
return {'MTbench': all_scores}
|