mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
708 lines
27 KiB
Python
708 lines
27 KiB
Python
import json
|
|
import os
|
|
import random
|
|
import re
|
|
import time
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
from threading import Lock
|
|
from typing import Dict, List, Optional, Union
|
|
|
|
import httpx
|
|
import jieba
|
|
import requests
|
|
from tqdm import tqdm
|
|
|
|
from opencompass.registry import MODELS
|
|
from opencompass.utils.prompt import PromptList
|
|
|
|
from .base_api import BaseAPIModel
|
|
|
|
PromptType = Union[PromptList, str]
|
|
OPENAI_API_BASE = os.path.join(
|
|
os.environ.get('OPENAI_BASE_URL', 'https://api.openai.com/v1/'),
|
|
'chat/completions',
|
|
)
|
|
OPENAISDK_API_BASE = os.environ.get('OPENAI_BASE_URL',
|
|
'https://api.openai.com/v1/')
|
|
|
|
O1_MODEL_LIST = ['o1', 'o3']
|
|
|
|
|
|
@MODELS.register_module()
|
|
class OpenAI(BaseAPIModel):
|
|
"""Model wrapper around OpenAI's models.
|
|
|
|
Args:
|
|
path (str): The name of OpenAI's model.
|
|
max_seq_len (int): The maximum allowed sequence length of a model.
|
|
Note that the length of prompt + generated tokens shall not exceed
|
|
this value. Defaults to 2048.
|
|
query_per_second (int): The maximum queries allowed per second
|
|
between two consecutive calls of the API. Defaults to 1.
|
|
retry (int): Number of retires if the API call fails. Defaults to 2.
|
|
key (str or List[str]): OpenAI key(s). In particular, when it
|
|
is set to "ENV", the key will be fetched from the environment
|
|
variable $OPENAI_API_KEY, as how openai defaults to be. If it's a
|
|
list, the keys will be used in round-robin manner. Defaults to
|
|
'ENV'.
|
|
org (str or List[str], optional): OpenAI organization(s). If not
|
|
specified, OpenAI uses the default organization bound to each API
|
|
key. If specified, the orgs will be posted with each request in
|
|
round-robin manner. Defaults to None.
|
|
meta_template (Dict, optional): The model's meta prompt
|
|
template if needed, in case the requirement of injecting or
|
|
wrapping of any meta instructions.
|
|
openai_api_base (str): The base url of OpenAI's API. Defaults to
|
|
'https://api.openai.com/v1/chat/completions'.
|
|
openai_proxy_url (str, optional): An optional proxy url to use when
|
|
connecting to OpenAI's API. When set to 'ENV', the url will be
|
|
fetched from the environment variable $OPENAI_PROXY_URL.
|
|
Defaults to None.
|
|
mode (str, optional): The method of input truncation when input length
|
|
exceeds max_seq_len. 'front','mid' and 'rear' represents the part
|
|
of input to truncate. Defaults to 'none'.
|
|
temperature (float, optional): What sampling temperature to use.
|
|
If not None, will override the temperature in the `generate()`
|
|
call. Defaults to None.
|
|
tokenizer_path (str, optional): The path to the tokenizer. Use path if
|
|
'tokenizer_path' is None, otherwise use the 'tokenizer_path'.
|
|
Defaults to None.
|
|
extra_body (Dict, optional): Add additional JSON properties to
|
|
the request
|
|
"""
|
|
|
|
is_api: bool = True
|
|
|
|
def __init__(
|
|
self,
|
|
path: str = 'gpt-3.5-turbo',
|
|
max_seq_len: int = 16384,
|
|
query_per_second: int = 1,
|
|
rpm_verbose: bool = False,
|
|
retry: int = 2,
|
|
key: Union[str, List[str]] = 'ENV',
|
|
org: Optional[Union[str, List[str]]] = None,
|
|
meta_template: Optional[Dict] = None,
|
|
openai_api_base: str = OPENAI_API_BASE,
|
|
openai_proxy_url: Optional[str] = None,
|
|
mode: str = 'none',
|
|
logprobs: Optional[bool] = False,
|
|
top_logprobs: Optional[int] = None,
|
|
temperature: Optional[float] = None,
|
|
tokenizer_path: Optional[str] = None,
|
|
extra_body: Optional[Dict] = None,
|
|
verbose: bool = False,
|
|
):
|
|
|
|
super().__init__(
|
|
path=path,
|
|
max_seq_len=max_seq_len,
|
|
meta_template=meta_template,
|
|
query_per_second=query_per_second,
|
|
rpm_verbose=rpm_verbose,
|
|
retry=retry,
|
|
verbose=verbose,
|
|
)
|
|
import tiktoken
|
|
|
|
self.tiktoken = tiktoken
|
|
self.temperature = temperature
|
|
assert mode in ['none', 'front', 'mid', 'rear']
|
|
self.mode = mode
|
|
self.logprobs = logprobs
|
|
self.top_logprobs = top_logprobs
|
|
self.tokenizer_path = tokenizer_path
|
|
self.hf_tokenizer = None
|
|
self.extra_body = extra_body
|
|
|
|
if isinstance(key, str):
|
|
if key == 'ENV':
|
|
if 'OPENAI_API_KEY' not in os.environ:
|
|
raise ValueError('OpenAI API key is not set.')
|
|
self.keys = os.getenv('OPENAI_API_KEY').split(',')
|
|
else:
|
|
self.keys = [key]
|
|
else:
|
|
self.keys = key
|
|
|
|
# record invalid keys and skip them when requesting API
|
|
# - keys have insufficient_quota
|
|
self.invalid_keys = set()
|
|
|
|
self.key_ctr = 0
|
|
if isinstance(org, str):
|
|
self.orgs = [org]
|
|
else:
|
|
self.orgs = org
|
|
self.org_ctr = 0
|
|
self.url = openai_api_base
|
|
|
|
if openai_proxy_url == 'ENV':
|
|
if 'OPENAI_PROXY_URL' not in os.environ:
|
|
raise ValueError('OPENAI_PROXY_URL is not set.')
|
|
self.proxy_url = os.getenv('OPENAI_PROXY_URL')
|
|
else:
|
|
self.proxy_url = openai_proxy_url
|
|
|
|
self.path = path
|
|
|
|
def generate(
|
|
self,
|
|
inputs: List[PromptType],
|
|
max_out_len: int = 512,
|
|
temperature: float = 0.7,
|
|
**kwargs,
|
|
) -> List[str]:
|
|
"""Generate results given a list of inputs.
|
|
|
|
Args:
|
|
inputs (List[PromptType]): A list of strings or PromptDicts.
|
|
The PromptDict should be organized in OpenCompass'
|
|
API format.
|
|
max_out_len (int): The maximum length of the output.
|
|
temperature (float): What sampling temperature to use,
|
|
between 0 and 2. Higher values like 0.8 will make the output
|
|
more random, while lower values like 0.2 will make it more
|
|
focused and deterministic. Defaults to 0.7.
|
|
|
|
Returns:
|
|
List[str]: A list of generated strings.
|
|
"""
|
|
if self.temperature is not None:
|
|
temperature = self.temperature
|
|
|
|
with ThreadPoolExecutor() as executor:
|
|
results = list(
|
|
tqdm(
|
|
executor.map(
|
|
self._generate,
|
|
inputs,
|
|
[max_out_len] * len(inputs),
|
|
[temperature] * len(inputs),
|
|
),
|
|
total=len(inputs),
|
|
desc='Inferencing',
|
|
))
|
|
return results
|
|
|
|
def _generate(self, input: PromptType, max_out_len: int,
|
|
temperature: float) -> str:
|
|
"""Generate results given a list of inputs.
|
|
|
|
Args:
|
|
inputs (PromptType): A string or PromptDict.
|
|
The PromptDict should be organized in OpenCompass'
|
|
API format.
|
|
max_out_len (int): The maximum length of the output.
|
|
temperature (float): What sampling temperature to use,
|
|
between 0 and 2. Higher values like 0.8 will make the output
|
|
more random, while lower values like 0.2 will make it more
|
|
focused and deterministic.
|
|
|
|
Returns:
|
|
str: The generated string.
|
|
"""
|
|
assert isinstance(input, (str, PromptList))
|
|
|
|
messages, max_out_len = self._preprocess_messages(
|
|
input, max_out_len, self.max_seq_len, self.mode,
|
|
self.get_token_len)
|
|
|
|
max_num_retries = 0
|
|
while max_num_retries < self.retry:
|
|
self.wait()
|
|
|
|
with Lock():
|
|
if len(self.invalid_keys) == len(self.keys):
|
|
raise RuntimeError('All keys have insufficient quota.')
|
|
|
|
# find the next valid key
|
|
while True:
|
|
self.key_ctr += 1
|
|
if self.key_ctr == len(self.keys):
|
|
self.key_ctr = 0
|
|
|
|
if self.keys[self.key_ctr] not in self.invalid_keys:
|
|
break
|
|
|
|
key = self.keys[self.key_ctr]
|
|
|
|
header = {
|
|
'Authorization': f'Bearer {key}',
|
|
'content-type': 'application/json',
|
|
'api-key': key,
|
|
}
|
|
|
|
if self.orgs:
|
|
with Lock():
|
|
self.org_ctr += 1
|
|
if self.org_ctr == len(self.orgs):
|
|
self.org_ctr = 0
|
|
header['OpenAI-Organization'] = self.orgs[self.org_ctr]
|
|
|
|
try:
|
|
if any(model in self.path for model in O1_MODEL_LIST):
|
|
self.logger.warning(
|
|
f"'max_token' is unsupported for model {self.path}")
|
|
self.logger.warning(
|
|
f'We use max_out_len: {max_out_len} for this query')
|
|
data = dict(
|
|
model=self.path,
|
|
messages=messages,
|
|
max_completion_tokens=max_out_len,
|
|
n=1,
|
|
logprobs=self.logprobs,
|
|
top_logprobs=self.top_logprobs,
|
|
stop=None,
|
|
temperature=temperature,
|
|
)
|
|
else:
|
|
data = dict(
|
|
model=self.path,
|
|
messages=messages,
|
|
max_tokens=max_out_len,
|
|
n=1,
|
|
logprobs=self.logprobs,
|
|
top_logprobs=self.top_logprobs,
|
|
stop=None,
|
|
temperature=temperature,
|
|
)
|
|
if self.extra_body:
|
|
data.update(self.extra_body)
|
|
if isinstance(self.url, list):
|
|
import random
|
|
|
|
url = self.url[random.randint(0, len(self.url) - 1)]
|
|
else:
|
|
url = self.url
|
|
|
|
if self.proxy_url is None:
|
|
raw_response = requests.post(url,
|
|
headers=header,
|
|
data=json.dumps(data))
|
|
else:
|
|
proxies = {
|
|
'http': self.proxy_url,
|
|
'https': self.proxy_url,
|
|
}
|
|
if self.verbose:
|
|
self.logger.debug(
|
|
f'Start send query to {self.proxy_url}')
|
|
raw_response = requests.post(
|
|
url,
|
|
headers=header,
|
|
data=json.dumps(data),
|
|
proxies=proxies,
|
|
)
|
|
|
|
if self.verbose:
|
|
self.logger.debug(
|
|
f'Get response from {self.proxy_url}')
|
|
|
|
except requests.ConnectionError:
|
|
self.logger.error('Got connection error, retrying...')
|
|
continue
|
|
try:
|
|
if raw_response.status_code != 200:
|
|
self.logger.error(f'Request failed with status code '
|
|
f'{raw_response.status_code}, response: '
|
|
f'{raw_response.content.decode()}')
|
|
continue
|
|
response = raw_response.json()
|
|
except requests.JSONDecodeError:
|
|
self.logger.error(f'JsonDecode error, got status code '
|
|
f'{raw_response.status_code}, response: '
|
|
f'{raw_response.content.decode()}')
|
|
continue
|
|
self.logger.debug(str(response))
|
|
try:
|
|
if self.logprobs:
|
|
return response['choices']
|
|
else:
|
|
return response['choices'][0]['message']['content'].strip()
|
|
except KeyError:
|
|
if 'error' in response:
|
|
if response['error']['code'] == 'rate_limit_exceeded':
|
|
time.sleep(10)
|
|
self.logger.warn('Rate limit exceeded, retrying...')
|
|
continue
|
|
elif response['error']['code'] == 'insufficient_quota':
|
|
self.invalid_keys.add(key)
|
|
self.logger.warn(f'insufficient_quota key: {key}')
|
|
continue
|
|
elif response['error']['code'] == 'invalid_prompt':
|
|
self.logger.warn('Invalid prompt:', str(input))
|
|
return ''
|
|
elif response['error']['type'] == 'invalid_prompt':
|
|
self.logger.warn('Invalid prompt:', str(input))
|
|
return ''
|
|
|
|
self.logger.error(
|
|
'Find error message in response: ',
|
|
str(response['error']),
|
|
)
|
|
max_num_retries += 1
|
|
|
|
raise RuntimeError('Calling OpenAI failed after retrying for '
|
|
f'{max_num_retries} times. Check the logs for '
|
|
'details.')
|
|
|
|
def get_token_len(self, prompt: str) -> int:
|
|
"""Get lengths of the tokenized string. Only English and Chinese
|
|
characters are counted for now. Users are encouraged to override this
|
|
method if more accurate length is needed.
|
|
|
|
Args:
|
|
prompt (str): Input string.
|
|
|
|
Returns:
|
|
int: Length of the input tokens
|
|
"""
|
|
assert self.tokenizer_path or self.path
|
|
try:
|
|
if self.verbose:
|
|
self.logger.info(f'Used tokenizer_path: {self.tokenizer_path}')
|
|
tokenizer_path = (self.tokenizer_path
|
|
if self.tokenizer_path else self.path)
|
|
try:
|
|
if self.verbose:
|
|
self.logger.info(
|
|
f'Start load tiktoken encoding: {tokenizer_path}')
|
|
enc = self.tiktoken.encoding_for_model(tokenizer_path)
|
|
if self.verbose:
|
|
self.logger.info(
|
|
f'Successfully tiktoken encoding: {tokenizer_path}')
|
|
return len(enc.encode(prompt, disallowed_special=()))
|
|
except Exception as e:
|
|
self.logger.warn(f'{e}, tiktoken encoding cannot load '
|
|
f'{tokenizer_path}')
|
|
from transformers import AutoTokenizer
|
|
|
|
if self.hf_tokenizer is None:
|
|
if self.verbose:
|
|
self.logger.info(
|
|
f'Start load hf tokenizer: {tokenizer_path}')
|
|
self.hf_tokenizer = AutoTokenizer.from_pretrained(
|
|
tokenizer_path, trust_remote_code=True)
|
|
self.logger.info(
|
|
f'Successfully load HF Tokenizer from {tokenizer_path}'
|
|
)
|
|
return len(self.hf_tokenizer(prompt).input_ids)
|
|
except Exception:
|
|
self.logger.warn(
|
|
'Can not get tokenizer automatically, '
|
|
'will use default tokenizer gpt-4 for length calculation.')
|
|
default_tokenizer = 'gpt-4'
|
|
|
|
enc = self.tiktoken.encoding_for_model(default_tokenizer)
|
|
if self.verbose:
|
|
self.logger.info(
|
|
f'Successfully load default tiktoken tokenizer: '
|
|
f' {default_tokenizer}')
|
|
return len(enc.encode(prompt, disallowed_special=()))
|
|
|
|
def _bin_trim(self, prompt: str, num_token: int, mode: str) -> str:
|
|
"""Get a suffix of prompt which is no longer than num_token tokens.
|
|
|
|
Args:
|
|
prompt (str): Input string.
|
|
num_token (int): The upper bound of token numbers.
|
|
mode (str): The method of input truncation
|
|
('front', 'mid', or 'rear')
|
|
|
|
Returns:
|
|
str: The trimmed prompt.
|
|
"""
|
|
token_len = self.get_token_len(prompt)
|
|
if token_len <= num_token:
|
|
return prompt
|
|
pattern = re.compile(r'[\u4e00-\u9fa5]')
|
|
if pattern.search(prompt):
|
|
words = list(jieba.cut(prompt, cut_all=False))
|
|
sep = ''
|
|
else:
|
|
words = prompt.split(' ')
|
|
sep = ' '
|
|
|
|
l, r = 1, len(words)
|
|
while l + 2 < r:
|
|
mid = (l + r) // 2
|
|
if mode == 'front':
|
|
cur_prompt = sep.join(words[-mid:])
|
|
elif mode == 'mid':
|
|
cur_prompt = sep.join(words[:mid]) + sep.join(words[-mid:])
|
|
elif mode == 'rear':
|
|
cur_prompt = sep.join(words[:mid])
|
|
|
|
if self.get_token_len(cur_prompt) <= num_token:
|
|
l = mid # noqa: E741
|
|
else:
|
|
r = mid
|
|
|
|
if mode == 'front':
|
|
prompt = sep.join(words[-l:])
|
|
elif mode == 'mid':
|
|
prompt = sep.join(words[:l]) + sep.join(words[-l:])
|
|
elif mode == 'rear':
|
|
prompt = sep.join(words[:l])
|
|
return prompt
|
|
|
|
def _preprocess_messages(
|
|
self,
|
|
input: Union[str, PromptList],
|
|
max_out_len: int,
|
|
max_seq_len: int,
|
|
mode: str,
|
|
get_token_len_func,
|
|
) -> tuple[List[Dict], int]:
|
|
"""Preprocess input into messages format and calculate max output
|
|
length.
|
|
|
|
Args:
|
|
input: Input prompt as string or PromptList
|
|
max_out_len: Maximum output length
|
|
max_seq_len: Maximum sequence length
|
|
mode: The method of input truncation
|
|
get_token_len_func: Function to calculate token length
|
|
|
|
Returns:
|
|
tuple: (processed messages list, adjusted max_out_len)
|
|
"""
|
|
# Check input length when mode is 'none'
|
|
if mode == 'none':
|
|
input_len = (get_token_len_func(input) if isinstance(
|
|
input, str) else sum(
|
|
get_token_len_func(item['prompt']) for item in input))
|
|
if input_len > max_seq_len:
|
|
raise ValueError(
|
|
f'Input length ({input_len}) exceeds max_seq_len '
|
|
f'({max_seq_len}) and mode is set to "none". Please '
|
|
f'either change the mode or increase the max_seq_len.')
|
|
|
|
# Trim input if needed
|
|
def bin_trim_wrapper(text):
|
|
trim_length = max_seq_len - 100
|
|
if max_out_len is not None:
|
|
trim_length -= max_out_len
|
|
return self._bin_trim(text, trim_length, mode)
|
|
|
|
if isinstance(input, str) and mode != 'none':
|
|
input = bin_trim_wrapper(input)
|
|
# Convert input to messages format
|
|
if isinstance(input, str):
|
|
messages = [{'role': 'user', 'content': input}]
|
|
input_len = get_token_len_func(input)
|
|
else:
|
|
messages = []
|
|
processed_prompts = []
|
|
for item in input:
|
|
input_content = item['prompt']
|
|
if mode != 'none':
|
|
input_content = bin_trim_wrapper(input_content)
|
|
processed_prompts.append(input_content)
|
|
msg = {'content': input_content}
|
|
if item['role'] == 'HUMAN':
|
|
msg['role'] = 'user'
|
|
elif item['role'] == 'BOT':
|
|
msg['role'] = 'assistant'
|
|
elif item['role'] == 'SYSTEM':
|
|
msg['role'] = 'system'
|
|
messages.append(msg)
|
|
input_len = sum(
|
|
get_token_len_func(prompt) for prompt in processed_prompts)
|
|
|
|
# Adjust max_out_len
|
|
if max_out_len is not None:
|
|
original_max_out_len = max_out_len
|
|
max_out_len = min(max_out_len, max_seq_len - input_len - 100)
|
|
if max_out_len <= 0:
|
|
raise ValueError(
|
|
f'max_out_len ({max_out_len}) is less than or equal to 0. '
|
|
f'This may be due to input length ({input_len}) being too '
|
|
f'close to max_seq_len ({max_seq_len}). Please increase '
|
|
f'max_seq_len or use a truncation mode other than "none".')
|
|
if max_out_len < original_max_out_len:
|
|
self.logger.warning(
|
|
f'max_out_len was truncated from {original_max_out_len} '
|
|
f'to {max_out_len} due to input length')
|
|
|
|
return messages, max_out_len
|
|
|
|
|
|
class OpenAISDK(OpenAI):
|
|
|
|
def __init__(self,
|
|
path: str = 'gpt-3.5-turbo',
|
|
max_seq_len: int = 16384,
|
|
query_per_second: int = 1,
|
|
rpm_verbose: bool = False,
|
|
retry: int = 2,
|
|
key: str | List[str] = 'ENV',
|
|
org: str | List[str] | None = None,
|
|
meta_template: Dict | None = None,
|
|
openai_api_base: str | List[str] = OPENAISDK_API_BASE,
|
|
openai_proxy_url: Optional[str] = None,
|
|
mode: str = 'none',
|
|
logprobs: bool | None = False,
|
|
top_logprobs: int | None = None,
|
|
temperature: float | None = None,
|
|
tokenizer_path: str | None = None,
|
|
extra_body: Dict | None = None,
|
|
verbose: bool = False,
|
|
status_code_mappings: dict = {},
|
|
think_tag: str = '</think>'):
|
|
super().__init__(
|
|
path,
|
|
max_seq_len,
|
|
query_per_second,
|
|
rpm_verbose,
|
|
retry,
|
|
key,
|
|
org,
|
|
meta_template,
|
|
openai_api_base,
|
|
openai_proxy_url,
|
|
mode,
|
|
logprobs,
|
|
top_logprobs,
|
|
temperature,
|
|
tokenizer_path,
|
|
extra_body,
|
|
verbose=verbose,
|
|
)
|
|
from openai import OpenAI
|
|
|
|
# support multiple api_base for acceleration
|
|
if isinstance(openai_api_base, List):
|
|
self.openai_api_base = random.choice(openai_api_base)
|
|
else:
|
|
self.openai_api_base = openai_api_base
|
|
|
|
if self.proxy_url is None:
|
|
self.openai_client = OpenAI(base_url=self.openai_api_base,
|
|
api_key=key)
|
|
else:
|
|
proxies = {
|
|
'http://': self.proxy_url,
|
|
'https://': self.proxy_url,
|
|
}
|
|
|
|
self.openai_client = OpenAI(
|
|
base_url=self.openai_api_base,
|
|
api_key=key,
|
|
http_client=httpx.Client(proxies=proxies),
|
|
)
|
|
if self.verbose:
|
|
self.logger.info(f'Used openai_client: {self.openai_client}')
|
|
self.status_code_mappings = status_code_mappings
|
|
self.think_tag = think_tag
|
|
|
|
def _generate(self,
|
|
input: PromptList | str,
|
|
max_out_len: int,
|
|
temperature: float,
|
|
timeout: int = 3600) -> str:
|
|
"""Generate results given a list of inputs.
|
|
|
|
Args:
|
|
input (PromptType): A string or PromptDict.
|
|
max_out_len (int): The maximum length of the output.
|
|
temperature (float): What sampling temperature to use.
|
|
timeout (int, optional): Timeout in seconds for the API call.
|
|
Defaults to 3600 (60 minutes).
|
|
|
|
Returns:
|
|
str: The generated string.
|
|
"""
|
|
from openai import APIStatusError, BadRequestError
|
|
|
|
assert isinstance(input, (str, PromptList))
|
|
|
|
messages, max_out_len = self._preprocess_messages(
|
|
input, max_out_len, self.max_seq_len, self.mode,
|
|
self.get_token_len)
|
|
|
|
num_retries = 0
|
|
while num_retries < self.retry:
|
|
self.wait()
|
|
if any(model in self.path for model in O1_MODEL_LIST):
|
|
self.logger.warning(
|
|
f"'max_token' is unsupported for model {self.path}")
|
|
self.logger.warning(
|
|
f'We use max_out_len: {max_out_len} for this query')
|
|
query_data = dict(
|
|
model=self.path,
|
|
max_completion_tokens=max_out_len,
|
|
n=1,
|
|
messages=messages,
|
|
extra_body=self.extra_body,
|
|
)
|
|
else:
|
|
query_data = dict(
|
|
model=self.path,
|
|
max_tokens=max_out_len,
|
|
n=1,
|
|
temperature=self.temperature,
|
|
messages=messages,
|
|
extra_body=self.extra_body,
|
|
)
|
|
|
|
try:
|
|
if self.verbose:
|
|
self.logger.info('Start calling OpenAI API')
|
|
responses = self.openai_client.chat.completions.create(
|
|
**query_data, timeout=timeout) # timeout in seconds
|
|
if self.verbose:
|
|
self.logger.info(
|
|
'Successfully get response from OpenAI API')
|
|
try:
|
|
self.logger.info(responses)
|
|
except Exception:
|
|
pass # noqa F841
|
|
|
|
# Check if response is empty or content is empty
|
|
if not responses.choices or not responses.choices[
|
|
0].message.content:
|
|
self.logger.error(
|
|
'API response is empty, it might be due to excessive '
|
|
'input length or an internal server error '
|
|
'from your API provider.')
|
|
num_retries += 1
|
|
# Continue to retry instead of returning empty response
|
|
continue
|
|
# If the model has reasoning_content, concat it
|
|
# with the content
|
|
if hasattr(responses.choices[0].message, 'reasoning_content'):
|
|
return (responses.choices[0].message.reasoning_content +
|
|
self.think_tag +
|
|
responses.choices[0].message.content)
|
|
|
|
return responses.choices[0].message.content
|
|
|
|
except (BadRequestError, APIStatusError) as e:
|
|
# Handle BadRequest status
|
|
# You can specify self.status_code_mappings to bypass \
|
|
# API sensitivity blocks
|
|
# For example: status_code_mappings={400: 'Input data \
|
|
# may contain inappropriate content.'}
|
|
status_code = e.status_code
|
|
if (status_code is not None
|
|
and status_code in self.status_code_mappings):
|
|
error_message = self.status_code_mappings[status_code]
|
|
self.logger.error(
|
|
f'error occurs at {self.openai_api_base}')
|
|
self.logger.info(f'Status Code: {status_code}, \n'
|
|
f'Original Error Message: {e}, \n'
|
|
f'Return Message: {error_message} ')
|
|
return error_message
|
|
else:
|
|
self.logger.error(
|
|
f'error occurs at {self.openai_api_base}')
|
|
self.logger.error(e)
|
|
except Exception as e:
|
|
self.logger.error(f'error occurs at {self.openai_api_base}')
|
|
self.logger.error(e)
|
|
num_retries += 1
|
|
raise RuntimeError('Calling OpenAI API failed after retrying for '
|
|
f'{self.retry} times. Check the logs for details.')
|