OpenCompass/opencompass/datasets/generic.py

111 lines
3.5 KiB
Python

import re
from opencompass.utils import get_logger
def get_final_results(judged_answers,
references,
origial_responses,
metric_name='accuracy'):
count = 0
is_correct_count = 0
is_incorrect_count = 0
is_not_attempted_count = 0
attempted_judge_count = 0
details = []
for i, j, k in zip(judged_answers, references, origial_responses):
if i in ['A', 'B']:
attempted_judge_count += 1
grade_letter = i
detail = {
'pred': k,
'ref': j,
'origin_grade_response': i,
'grade_letter': grade_letter,
'correct': False,
}
count += 1
if grade_letter == 'A':
is_correct_count += 1
detail['correct'] = True
elif grade_letter == 'B':
is_incorrect_count += 1
else:
is_not_attempted_count += 1
details.append(detail)
is_correct = is_correct_count / count
is_incorrect = is_incorrect_count / count
is_given_attempted = is_correct + is_incorrect
accuracy_given_attempted = (is_correct / is_given_attempted
if is_given_attempted > 0 else 0)
attempted_judge_ratio = attempted_judge_count / count
f1 = (2 * accuracy_given_attempted * is_correct /
(accuracy_given_attempted + is_correct) if
(accuracy_given_attempted + is_correct) > 0 else 0)
result = {
metric_name: is_correct * 100,
f'{metric_name}_given_attempted': accuracy_given_attempted * 100,
'f1': f1,
'attempted_ratio': attempted_judge_ratio * 100,
'correct_count': is_correct_count,
'incorrect_count': is_incorrect_count,
'not_attempted_count': is_not_attempted_count,
'details': details,
}
return result
def _generic_llmjudge_postprocess(judgement: str):
match = re.search(r'(A|B)', judgement)
grade_letter = (match.group(0) if match else 'unknown'
) # Return 'unknown' if no match
return grade_letter
def generic_llmjudge_postprocess(
output: dict,
output_path: str,
) -> dict:
judged_answers = []
origial_responses = []
references = []
for k, v in output.items():
origial_responses.append(v['prediction'])
processed_judge = _generic_llmjudge_postprocess(v['prediction'])
if processed_judge is not None:
judged_answers.append(processed_judge)
try:
references.append(v['gold'])
except KeyError:
get_logger().warning(
f'No gold answer for {k}, use empty string as reference!')
references.append('')
results = get_final_results(judged_answers, references, origial_responses)
results['details'] = output
return results
def generic_llmjudge_academic_postprocess(
output: dict,
output_path: str,
metric_name: str = 'accuracy',
) -> dict:
judged_answers = []
origial_responses = []
references = []
for k, v in output.items():
origial_responses.append(v['prediction'])
processed_judge = _generic_llmjudge_postprocess(v['prediction'])
if processed_judge is not None:
judged_answers.append(processed_judge)
references.append(v['gold'])
results = get_final_results(judged_answers, references, origial_responses,
metric_name)
results['details'] = output
# For academic summarizer
results.pop('f1', None)
return results