OpenCompass/opencompass/configs/datasets/MMLUArabic/MMLUArabic_zero_shot_gen_3523e0.py
Songyang Zhang 46cc7894e1
[Feature] Support import configs/models/summarizers from whl (#1376)
* [Feature] Support import configs/models/summarizers from whl

* Update LCBench configs

* Update

* Update

* Update

* Update

* update

* Update

* Update

* Update

* Update

* Update
2024-08-01 00:42:48 +08:00

54 lines
4.9 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import MMLUArabicDataset
from opencompass.utils.text_postprocessors import first_option_postprocess
# None of the MMLUArabic dataset in huggingface is correctly parsed, so we use our own dataset reader
# Please download the dataset from https://github.com/FreedomIntelligence/AceGPT/tree/main/eval/benchmark_eval/benchmarks/MMLUArabic
MMLUArabic_reader_cfg = dict(
input_columns=['input', 'A', 'B', 'C', 'D'],
output_column='target',
train_split='dev')
MMLUArabic_all_sets = ['abstract_algebra', 'anatomy', 'astronomy', 'business_ethics', 'clinical_knowledge', 'college_biology', 'college_chemistry', 'college_computer_science', 'college_mathematics', 'college_medicine', 'college_physics', 'computer_security', 'conceptual_physics', 'econometrics', 'electrical_engineering', 'elementary_mathematics', 'formal_logic', 'global_facts', 'high_school_biology', 'high_school_chemistry', 'high_school_computer_science', 'high_school_european_history', 'high_school_geography', 'high_school_government_and_politics', 'high_school_macroeconomics', 'high_school_mathematics', 'high_school_microeconomics', 'high_school_physics', 'high_school_psychology', 'high_school_statistics', 'high_school_us_history', 'high_school_world_history', 'human_aging', 'human_sexuality', 'international_law', 'jurisprudence', 'logical_fallacies', 'machine_learning', 'management', 'marketing', 'medical_genetics', 'miscellaneous', 'moral_disputes', 'moral_scenarios', 'nutrition', 'philosophy', 'prehistory', 'professional_accounting', 'professional_law', 'professional_medicine', 'professional_psychology', 'public_relations', 'security_studies', 'sociology', 'us_foreign_policy', 'virology', 'world_religions']
MMLUArabic_all_sets_ar = ['جبر_تجريدي', 'تشريح', 'علم_الفلك', 'أخلاقيات_الأعمال', 'المعرفة_السريرية', 'علم_الأحياء_الجامعي', 'كيمياء_جامعية', 'علوم_الحاسوب_الجامعية', 'رياضيات_جامعية', 'طب_جامعي', 'فيزياء_جامعية', 'أمان_الحاسوب', 'فيزياء_مفاهيمية', 'الاقتصاد_القياسي', 'هندسة_كهربائية', 'رياضيات_ابتدائية', 'منطق_رسمي', 'حقائق_عالمية', 'علم_الأحياء_الثانوي', 'كيمياء_ثانوية', 'علوم_الحاسوب_الثانوية', 'تاريخ_أوروبا_الثانوي', 'جغرافية_ثانوية', 'الحكومة_والسياسة_الثانوية', 'اقتصاد_كلي_ثانوي', 'رياضيات_ثانوية', 'اقتصاد_جزئي_ثانوي', 'فيزياء_ثانوية', 'علم_النفس_الثانوي', 'إحصاء_ثانوي', 'تاريخ_الولايات_المتحدة_الثانوي', 'تاريخ_العالم_الثانوي', 'شيخوخة_الإنسان', 'جنسانية_بشرية', 'قانون_دولي', 'فقه', 'أخطاء_منطقية', 'تعلم_الآلة', 'إدارة', 'تسويق', 'جينات_طبية', 'متفرقات', 'نزاعات_أخلاقية', 'سيناريوهات_أخلاقية', 'تغذية', 'فلسفة', 'ما_قبل_التاريخ', 'محاسبة_مهنية', 'قانون_مهني', 'طب_مهني', 'علم_النفس_المهني', 'علاقات_عامة', 'دراسات_الأمان', 'علم_الاجتماع', 'سياسة_خارجية_أمريكية', 'علم_الفيروسات', 'أديان_العالم']
MMLUArabic_datasets = []
for _name, _name_ar in zip(MMLUArabic_all_sets, MMLUArabic_all_sets_ar):
_hint = f"فيما يلي أسئلة الاختيار من متعدد حول {' '.join(_name_ar.split('_'))}\n\n" + '{input}\n' + "من فضلك اختر إجابة واحدة من بين 'A، B، C، D' دون شرح."
MMLUArabic_infer_cfg = dict(
ice_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(
role='HUMAN',
prompt=_hint.format(input='سؤال: {input}\nA. {A}\nB. {B}\nC. {C}\nD. {D}')
),
]),
ice_token='</E>',
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
MMLUArabic_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_postprocessor=dict(type=first_option_postprocess, options='ABCD'))
MMLUArabic_datasets.append(
dict(
abbr=f'acegpt_MMLUArabic_{_name}',
type=MMLUArabicDataset,
path='./data/MMLUArabic/',
name=_name,
reader_cfg=MMLUArabic_reader_cfg,
infer_cfg=MMLUArabic_infer_cfg,
eval_cfg=MMLUArabic_eval_cfg,
))
del _name, _hint