OpenCompass/opencompass/configs/datasets/mmlu/mmlu_gen_a484b3.py
Songyang Zhang 46cc7894e1
[Feature] Support import configs/models/summarizers from whl (#1376)
* [Feature] Support import configs/models/summarizers from whl

* Update LCBench configs

* Update

* Update

* Update

* Update

* update

* Update

* Update

* Update

* Update

* Update
2024-08-01 00:42:48 +08:00

125 lines
3.7 KiB
Python

from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import FixKRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import MMLUDataset
from opencompass.utils.text_postprocessors import first_option_postprocess
# None of the mmlu dataset in huggingface is correctly parsed, so we use our own dataset reader
# Please download the dataset from https://people.eecs.berkeley.edu/~hendrycks/data.tar
mmlu_reader_cfg = dict(
input_columns=['input', 'A', 'B', 'C', 'D'],
output_column='target',
train_split='dev')
mmlu_all_sets = [
'college_biology',
'college_chemistry',
'college_computer_science',
'college_mathematics',
'college_physics',
'electrical_engineering',
'astronomy',
'anatomy',
'abstract_algebra',
'machine_learning',
'clinical_knowledge',
'global_facts',
'management',
'nutrition',
'marketing',
'professional_accounting',
'high_school_geography',
'international_law',
'moral_scenarios',
'computer_security',
'high_school_microeconomics',
'professional_law',
'medical_genetics',
'professional_psychology',
'jurisprudence',
'world_religions',
'philosophy',
'virology',
'high_school_chemistry',
'public_relations',
'high_school_macroeconomics',
'human_sexuality',
'elementary_mathematics',
'high_school_physics',
'high_school_computer_science',
'high_school_european_history',
'business_ethics',
'moral_disputes',
'high_school_statistics',
'miscellaneous',
'formal_logic',
'high_school_government_and_politics',
'prehistory',
'security_studies',
'high_school_biology',
'logical_fallacies',
'high_school_world_history',
'professional_medicine',
'high_school_mathematics',
'college_medicine',
'high_school_us_history',
'sociology',
'econometrics',
'high_school_psychology',
'human_aging',
'us_foreign_policy',
'conceptual_physics',
]
mmlu_datasets = []
for _name in mmlu_all_sets:
_hint = f'There is a single choice question about {_name.replace("_", " ")}. Answer the question by replying A, B, C or D.'
mmlu_infer_cfg = dict(
ice_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt=
f'{_hint}\nQuestion: {{input}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\nAnswer: '
),
dict(role='BOT', prompt='{target}\n')
]),
),
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin='</E>',
round=[
dict(
role='HUMAN',
prompt=
f'{_hint}\nQ: {{input}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\nA: '
),
],
),
ice_token='</E>',
),
retriever=dict(type=FixKRetriever, fix_id_list=[0, 1, 2, 3, 4]),
inferencer=dict(type=GenInferencer),
)
mmlu_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_postprocessor=dict(type=first_option_postprocess, options='ABCD'))
mmlu_datasets.append(
dict(
abbr=f'lukaemon_mmlu_{_name}',
type=MMLUDataset,
path='opencompass/mmlu',
name=_name,
reader_cfg=mmlu_reader_cfg,
infer_cfg=mmlu_infer_cfg,
eval_cfg=mmlu_eval_cfg,
))
del _name, _hint