mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
![]() * Add GaoKaoMath Dataset * Add MATH LLM Eval * Update GAOKAO Math Eval Dataset * Update GAOKAO Math Eval Dataset |
||
---|---|---|
.. | ||
gaokao_math_gen_f5fd28.py | ||
README.md |
GaoKao MATH Answer Evaluation Dataset
A dataset for testing the performance of the model in the GaoKao MATH Answer Extraction task. Now support the following format of GAOKAO math questions:
- '单选题':Single choice question
- '多选题':Multiple choice question
- '填空题':Fill in the blank question, can be multiple blanks
- '解答题':Answer question, can be multiple answers
Sample data:
[
{
"id": "3b270bc4-570a-4d77-b122-a2fc372f7d6a",
"question": "过椭圆${x^2\\over {16}} +{ y^2 \\over {4}}=1$ %内一点$M(2,1)$ %引一条弦,使该弦被点$M$ %平分,则这条弦所在直线的方程为( ).\nA. $x+2y-4=0$ %\nB. $x-2y-4=0$ %\nC. $x+2y+4=0$ %\nD. $x-2y+4=0$ %\n\n",
"response": "本题主要考查直线与圆锥曲线.设所求直线与椭圆的一个交点为$A(x,y)$ %,由于中点$M(2,1)$ %,所以另一个交点$B$ %为$(4-x,2-y)$ %.因为$A$ %,$B$ %两点都在椭圆上,所以$x^2+4y^2=16$ %,$(4-x)^2+4(2-y)^2=16$ %,两式相减,整理可得$x+2y-4=0$ %.由于过$A$ %,$B$ %两点的直线只有一条,所以这条弦所在直线的方程为$x+2y-4=0$ %.故本题正确答案为A.\n答案是:A",
"extract_answer": "A",
"question_type": "单选题"
},
{
"id": "d60e42d7-30ee-44f9-a94d-aff6a8127750",
"question": "若函数$f(x)$ 具有下列性质:1.定义域为$(-1,1)$ ;2.对于任意的$x,y\\in(-1,1)$ ,都有$f(x)+f(y)=f\\left({\\dfrac{x+y}{1+xy}}\\right)$ ;3.当$-1< x< 0$ 时,$f(x)>0$ ,则称函数$f(x)$ 为$δ$ 的函数$.$ 若函数$f(x)$ 为$δ$ 的函数,则以下结论正确的是$(\\quad)$\nA. $\nB. x)$ 为奇函数\nC. $\nD. x)$ 为偶函数\nE. $\nF. x)$ 为单调递减函数\nG. $\nH. x)$ 为单调递增函数\n\n",
"response": "函数$f(x)$ 为$δ$ 的函数,令$x=y=0$ ,则$f(0)+f(0)=f(0)$ ,即$f(0)=0$ ,令$y=-x$ ,则$f(x)+f(-x)=f\\left(\\dfrac{x-x}{1-{x}^{2}}\\right)=f(0)=0$ ,则$f(-x)=-f(x)$ ,即函数$f(x)$ 是奇函数,设$-1< x< y< 1$ ,则$f(x)-f(y)=f(x)+f(-y)=f\\left(\\dfrac{x-y}{1-xy}\\right)$ ,$∵-1< x< y< 1$ ,$∴-1< \\dfrac{x-y}{1-xy}< 0$ ,则$f\\left(\\dfrac{x-y}{1-xy}\\right)>0$ ,即$f(x)-f(y)>0$ ,则$f(x)>f(y)$ ,即$f(x)$ 在$(-1,1)$ 上是减函数.故选$AC.$ 本题考查函数的奇偶性和单调性的判断,注意运用定义法,考查运算能力和推理能力,属于中档题.可令$x=y=0$ ,求得$f(0)=0$ ,再令$y=-x$ 可得$f(-x)=-f(x)$ ,可得$f(x)$ 的奇偶性;再令$-1< x< y< 1$ ,运用单调性的定义,结合其偶性的定义可得其单调性.\n答案是:A; C",
"extract_answer": "A, C",
"question_type": "多选题"
},
{
"id": "31b3f702-e60c-4a20-9a40-73bd72b92d1e",
"question": "请完成以下题目(1)曲线$$y=-5\\text{e}^{x}+3$$在点$$(0,-2)$$处的切线方程为___.(2)若曲线$$f(x)=x \\sin x+1$$在$$x=\\dfrac{ \\pi }{2}$$处的切线与直线$$ax+2y+1=0$$相互垂直,则实数$$a=$$___.\n\n",
"response": "(1)由$$y=-5\\text{e}^{x}+3$$,得$$y'=-5\\text{e}^{x}$$,所以切线的斜率$$k=y'|_{x=0}=-5$$,所以切线方程为$$y+2=-5(x-0)$$,即$$5x+y+2=0$$.(2)因为$$f'(x)= \\sin x+x \\cos x$$,所以$$f'\\left(\\dfrac{ \\pi }{2}\\right)= \\sin \\dfrac{ \\pi }{2}+\\dfrac{ \\pi }{2}\\cdot \\cos \\dfrac{ \\pi }{2}=1$$.又直线$$ax+2y+1=0$$的斜率为$$-\\dfrac{a}{2}$$,所以根据题意得$$1\\times \\left(-\\dfrac{a}{2}\\right)=-1$$,解得$$a=2$$.\n答案是:(1)$$5x+y+2=0$$ (2)$$2$$",
"extract_answer": "['(1)$$5x+y+2=0$$ (2)$$2$$']",
"question_type": "填空题"
},
{
"id": "16878941-1772-4290-bc61-00b193d5cf70",
"question": "已知函数$f\\left( x \\right)=\\left| 2x-1 \\right|$.(1)若不等式$f\\left( x+\\frac{1}{2} \\right)\\ge 2m+1\\left( m > 0 \\right)$的解集为$\\left( -\\infty ,-2 \\right]\\bigcup \\left[ 2,+\\infty \\right)$,求实数$m$的值;(2)若不等式$f\\left( x \\right)\\le {{2}^{y}}+\\frac{a}{{{2}^{y}}}+\\left| 2x+3 \\right|$对任意的实数$x,y\\in R$恒成立,求实数$a$的最小值.\n\n",
"response": "(1)直接写出不等式,解含有绝对值的函数不等式即可;(2)这是恒成立求参的问题,根据绝对值三角不等式得到左侧函数的最值,再结合均值不等式得最值.(1)由条件得$\\left| 2x \\right|\\le 2m+1$得$-m-\\frac{1}{2}\\le x\\le m+\\frac{1}{2}$,所以$m=\\frac{3}{2}$.(2)原不等式等价于$\\left| 2x-1 \\right|-\\left| 2x+3 \\right|\\le {{2}^{y}}+\\frac{a}{{{2}^{y}}}$,而$\\left| 2x-1 \\right|-\\left| 2x+3 \\right|\\le \\left| \\left( 2x-1 \\right)-\\left( 2x+3 \\right) \\right|=4$,所以${{2}^{y}}+\\frac{a}{{{2}^{y}}}\\ge 4$,则$a\\ge {{\\left[ {{2}^{y}}\\left( 4-{{2}^{y}} \\right) \\right]}_{\\text{max}}}=4$,当且仅当$y=1$时取得.\n答案是:(1) $m=\\frac{3}{2}$;(2) 最小值为$a=4$.",
"extract_answer": [
"(1) $m=\\frac{3}{2}$;(2) 最小值为$a=4$."
],
"question_type": "解答题"
}
]
How to use
1. Prepare the dataset
cd opencompass
cp -rf /cpfs01/shared/public/liuhongwei/data/gaokao_math_dataset/gaokao_math ./data
📢:If you want to evaluate your own gaokao math data, replace the test_v2.jsonl
with your own data, but follow the format above.
2. Set the evaluation model
open opencompass.datasets.gaokao_math.gaokao_math_gen_9b076f
and set the model name and api url for evaluation, multiple urls are supported for acceleration.
...
gaokao_math_eval_cfg = dict(
evaluator=dict(type=GaoKaoMATHEvaluator, model_name='EVALUATE_MODEL_NAME', url=['http://0.0.0.0:23333/v1', 'http://...']))
...
We recommand Qwen2.5-72B-Instruct
model for evaluation.
3. Set Extractor model and run the evaluation
from mmengine.config import read_base
from opencompass.models import HuggingFacewithChatTemplate
with read_base():
from opencompass.datasets.gaokao_math.gaokao_math_gen_9b076f import gaokao_math_datasets
trained_qwen2_1_5b_model = [ # trained extractor model
dict(
type=HuggingFacewithChatTemplate,
abbr='gaokao_math_extractor_1_5b_v02',
path='/cpfs01/shared/public/liuhongwei/models/gaokao_math_trained/gaokao_math_extractor_1_5b_v02',
max_out_len=1024,
batch_size=8,
run_cfg=dict(num_gpus=1),
)
]
datasets = sum([v for k, v in locals().items() if k.endswith("_datasets")], [])
models = sum([v for k, v in locals().items() if k.endswith("_model")], [])
...
4. Run the evaluation
python run.py eval.py --dump-eval-details # eval and dump the evaluation details to `results` folder
5. Evaluation results
Evaluator / Extractor | Qwen2.5-72B-Instruct | gaokao_math_extractor_1.5b_v0.2 |
---|---|---|
Qwen2.5-72B-Instruct (ACC) | 95.85 | 95.2 |