mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
173 lines
5.7 KiB
Python
173 lines
5.7 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
import re
|
|
|
|
import math
|
|
|
|
from .pooler_projector import NormalizedDwPooler
|
|
import os
|
|
import math
|
|
|
|
class IdentityMap(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def forward(self, x, *args, **kwargs):
|
|
return x
|
|
|
|
@property
|
|
def config(self):
|
|
return {"mm_projector_type": 'identity'}
|
|
|
|
|
|
class SimpleResBlock(nn.Module):
|
|
def __init__(self, channels):
|
|
super().__init__()
|
|
self.pre_norm = nn.LayerNorm(channels)
|
|
|
|
self.proj = nn.Sequential(
|
|
nn.Linear(channels, channels),
|
|
nn.GELU(),
|
|
nn.Linear(channels, channels)
|
|
)
|
|
def forward(self, x):
|
|
x = self.pre_norm(x)
|
|
return x + self.proj(x)
|
|
|
|
class OlaMLP(nn.Module):
|
|
def __init__(self, in_channels, out_channels, twoview=False):
|
|
super().__init__()
|
|
|
|
self.proj1 = nn.Linear(in_channels, out_channels)
|
|
self.proj2 = nn.Linear(out_channels, out_channels)
|
|
self.act = nn.GELU()
|
|
self.pooler = NormalizedDwPooler(out_channels)
|
|
|
|
embed_std = 1 / math.sqrt(out_channels)
|
|
self.image_newline = nn.Parameter(
|
|
torch.randn(out_channels) * embed_std
|
|
)
|
|
self.image_begin = nn.Parameter(
|
|
torch.randn(out_channels) * embed_std
|
|
)
|
|
self.image_end = nn.Parameter(
|
|
torch.randn(out_channels) * embed_std
|
|
)
|
|
|
|
if twoview:
|
|
self.image_sep = nn.Parameter(
|
|
torch.randn(out_channels) * embed_std
|
|
)
|
|
|
|
def forward(self, x, size=(16,16), x2=None, size2=(16, 16), modalities='image'):
|
|
|
|
if modalities in ['image', 'text']:
|
|
h, w = size
|
|
dtype = x.dtype
|
|
x = x.reshape(x.shape[0], h, w, -1)
|
|
x = self.proj1(x)
|
|
x = self.pooler(x, forward_type='2x')
|
|
x = self.act(x)
|
|
x = self.proj2(x)
|
|
|
|
|
|
b, h, w, c = x.shape
|
|
x = torch.cat([
|
|
x,
|
|
self.image_newline.reshape(1, 1, 1, c).expand(b, h, 1, c).to(dtype)
|
|
], dim=2)
|
|
x = x.reshape(b, -1, c)
|
|
|
|
if x2 is not None:
|
|
h2, w2 = size2
|
|
x2 = x2.reshape(x2.shape[0], h2, w2, -1)
|
|
x2 = self.proj1(x2)
|
|
x2 = self.pooler(x2, forward_type='2x')
|
|
x2 = self.act(x2)
|
|
x2 = self.proj2(x2)
|
|
|
|
b2, h2, w2, c2 = x2.shape
|
|
x2 = torch.cat([
|
|
x2,
|
|
self.image_newline.reshape(1, 1, 1, c).expand(b, h2, 1, c).to(dtype)
|
|
], dim=2)
|
|
x2 = x2.reshape(b, -1, c)
|
|
sep = self.image_sep.reshape(1, 1, -1).expand(b, 1, c2).to(dtype)
|
|
x = torch.cat([x, sep, x2], dim=1)
|
|
|
|
begin = self.image_begin.reshape(1, 1, -1).expand(b, 1, c).to(dtype)
|
|
end = self.image_end.reshape(1, 1, -1).expand(b, 1, c).to(dtype)
|
|
x = torch.cat([begin, x, end], dim=1)
|
|
return x
|
|
elif modalities in ['video']:
|
|
# x2 is the true feature, ignore x
|
|
h, w = size
|
|
dtype = x.dtype
|
|
x = x.reshape(x.shape[0], h, w, -1)
|
|
x1 = self.proj1(x)
|
|
x1 = self.pooler(x1, forward_type='2x')
|
|
x1 = self.proj2(x1).mean() * 0.0
|
|
|
|
h2, w2 = size2
|
|
x2 = x2.reshape(x2.shape[0], h2, w2, -1)
|
|
x2 = self.proj1(x2)
|
|
x2 = self.pooler(x2, forward_type='2x')
|
|
x2 = self.act(x2)
|
|
x2 = self.proj2(x2)
|
|
|
|
b2, h2, w2, c = x2.shape
|
|
x2 = torch.cat([
|
|
x2,
|
|
self.image_newline.reshape(1, 1, 1, c).expand(b2, h2, 1, c).to(dtype)
|
|
], dim=2)
|
|
|
|
x2 = x2.reshape(b2, -1, c)
|
|
|
|
sep = self.image_sep.reshape(1, 1, -1).expand(b2, 1, c).to(dtype)
|
|
x2 = torch.cat([x2, sep], dim=1)
|
|
|
|
x2 = x2.flatten(0, 1)
|
|
|
|
begin = self.image_begin.reshape(1, -1).expand(1, c).to(dtype)
|
|
end = self.image_end.reshape(1, -1).expand(1, c).to(dtype)
|
|
x2 = torch.cat([begin, x2, end], dim=0)
|
|
x2 = x2.unsqueeze(0)
|
|
return x2
|
|
else:
|
|
raise ValueError(f'Unknown modalities: {modalities}')
|
|
|
|
def build_vision_projector(config, delay_load=False, **kwargs):
|
|
projector_type = getattr(config, 'mm_projector_type', 'linear')
|
|
|
|
if projector_type == 'linear':
|
|
return nn.Linear(config.mm_hidden_size, config.hidden_size)
|
|
|
|
elif projector_type == 'ola_mlp':
|
|
return OlaMLP(config.mm_hidden_size, config.hidden_size, twoview=True)
|
|
|
|
mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type)
|
|
if mlp_gelu_match:
|
|
mlp_depth = int(mlp_gelu_match.group(1))
|
|
modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)]
|
|
for _ in range(1, mlp_depth):
|
|
modules.append(nn.GELU())
|
|
modules.append(nn.Linear(config.hidden_size, config.hidden_size))
|
|
return nn.Sequential(*modules)
|
|
|
|
mlp_gelu_resnet_match = re.match(r'^mlp(\d+)x_res(\d+)x_gelu$', projector_type)
|
|
if mlp_gelu_resnet_match:
|
|
mlp_depth = int(mlp_gelu_resnet_match.group(1))
|
|
res_depth = int(mlp_gelu_resnet_match.group(2))
|
|
modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)]
|
|
for _ in range(1, mlp_depth):
|
|
modules.append(nn.GELU())
|
|
modules.append(nn.Linear(config.hidden_size, config.hidden_size))
|
|
for _ in range(res_depth):
|
|
modules.append(SimpleResBlock(config.hidden_size))
|
|
return nn.Sequential(*modules)
|
|
|
|
if projector_type == 'identity':
|
|
return IdentityMap()
|
|
|
|
raise ValueError(f'Unknown projector type: {projector_type}')
|