OpenCompass/opencompass/models/turbomind_api.py
Junnan Liu 70f2c963d3
[Feature] Support Omni-Math (#1837)
* support omni-math

* update config

* upload README

* Delete opencompass/configs/datasets/omni_math/__init__.py

---------

Co-authored-by: liushz <qq1791167085@163.com>
2025-01-23 18:36:54 +08:00

147 lines
5.5 KiB
Python

import threading
from concurrent.futures import ThreadPoolExecutor
from typing import Dict, List, Optional, Union
from opencompass.models.base import BaseModel, LMTemplateParser
from opencompass.utils.logging import get_logger
from opencompass.utils.prompt import PromptList
PromptType = Union[PromptList, str]
def valid_str(string, coding='utf-8'):
"""decode text according to its encoding type."""
invalid_chars = [b'\xef\xbf\xbd']
bstr = bytes(string, coding)
for invalid_char in invalid_chars:
bstr = bstr.replace(invalid_char, b'')
ret = bstr.decode(encoding=coding, errors='ignore')
return ret
class TurboMindAPIModel(BaseModel):
"""Model wrapper for lmdeploy api server.
Args:
api_addr (str): The address (ip:port format) of lmdeploy's
api server.
max_seq_len (int): The maximum allowed sequence length of a model.
Note that the length of prompt + generated tokens shall not exceed
this value. Defaults to 2048.
meta_template (Dict, optional): The model's meta prompt
template if needed, in case the requirement of injecting or
wrapping of any meta instructions.
end_str (str, optional): Whether to trim generated strings with end_str
if the model has special ending strings that are not handled well.
Defaults to None.
"""
is_api: bool = True
def __init__(self,
model_name: str = None,
api_addr: str = 'http://0.0.0.0:23333',
api_key: str | None = None,
max_seq_len: int = 2048,
meta_template: Optional[Dict] = None,
end_str: Optional[str] = None,
temperature: float = None,
**kwargs):
super().__init__(path='',
max_seq_len=max_seq_len,
meta_template=meta_template)
from lmdeploy.serve.openai.api_client import APIClient
self.chatbot = APIClient(api_addr, api_key)
self.model_name = model_name
self.logger = get_logger()
self.template_parser = LMTemplateParser(meta_template)
self.eos_token_id = None
if meta_template and 'eos_token_id' in meta_template:
self.eos_token_id = meta_template['eos_token_id']
self.api_addr = api_addr
self.end_str = end_str
self.temperature = temperature
def generate(
self,
inputs: List[PromptType],
max_out_len: int = 512,
temperature: float = 1.0,
) -> List[str]:
"""Generate results given a list of inputs.
Args:
inputs (List[PromptType]): A list of strings or PromptDicts.
The PromptDict should be organized in OpenCompass'
API format.
max_out_len (int): The maximum length of the output.
temperature (float): What sampling temperature to use,
between 0 and 2. Higher values like 0.8 will make the output
more random, while lower values like 0.2 will make it more
focused and deterministic. Defaults to 0.7.
end_str (str, optional): Whether to trim generated strings
with end_str if the model has special ending strings
that are not handled well.
Defaults to None.
Returns:
List[str]: A list of generated strings.
"""
if self.temperature is not None:
temperature = self.temperature
with ThreadPoolExecutor() as executor:
results = list(
executor.map(self._generate, inputs,
[max_out_len] * len(inputs),
[temperature] * len(inputs),
[self.end_str] * len(inputs)))
return results
def get_token_len(self, prompt: str) -> int:
input_ids, length = self.chatbot.encode(prompt)
return length
def wait(self):
"""Wait till the next query can be sent.
Applicable in both single-thread and multi-thread environments.
"""
return self.token_bucket.get_token()
def _generate(self, prompt: PromptType, max_out_len: int,
temperature: float, end_str: str) -> str:
"""Generate results given a list of inputs.
Args:
prompt (PromptType): A string or PromptDict.
The PromptDict should be organized in OpenCompass'
API format.
max_out_len (int): The maximum length of the output.
temperature (float): What sampling temperature to use,
between 0 and 2. Higher values like 0.8 will make the output
more random, while lower values like 0.2 will make it more
focused and deterministic.
Returns:
str: The generated string.
"""
assert type(
prompt) is str, 'We only support string for TurboMind RPC API'
response = ''
for output in self.chatbot.completions_v1(
prompt=prompt,
model=self.model_name,
max_tokens=max_out_len,
temperature=temperature,
top_p=0.8,
top_k=50,
session_id=threading.currentThread().ident,
):
response += output['choices'][0]['text']
response = valid_str(response)
if end_str:
response = response.split(end_str)[0]
return response