OpenCompass/docs/en/advanced_guides/evaluation_lmdeploy.md
Lyu Han b52ba65c26
[Feature] Integrate lmdeploy pipeline api (#1198)
* integrate lmdeploy's pipeline api

* fix linting

* update user guide

* rename

* update

* update

* update

* rollback class name

* update

* remove unused code

* update

* update

* fix ci check

* compatibility

* remove concurrency

* Update configs/models/hf_internlm/lmdeploy_internlm2_chat_7b.py

* Update docs/zh_cn/advanced_guides/evaluation_lmdeploy.md

* [Bug] fix lint

---------

Co-authored-by: Songyang Zhang <tonysy@users.noreply.github.com>
Co-authored-by: tonysy <sy.zhangbuaa@gmail.com>
2024-10-09 22:58:06 +08:00

89 lines
3.4 KiB
Markdown

# Evaluation with LMDeploy
We now support evaluation of models accelerated by the [LMDeploy](https://github.com/InternLM/lmdeploy). LMDeploy is a toolkit designed for compressing, deploying, and serving LLM. It has a remarkable inference performance. We now illustrate how to evaluate a model with the support of LMDeploy in OpenCompass.
## Setup
### Install OpenCompass
Please follow the [instructions](https://opencompass.readthedocs.io/en/latest/get_started/installation.html) to install the OpenCompass and prepare the evaluation datasets.
### Install LMDeploy
Install lmdeploy via pip (python 3.8+)
```shell
pip install lmdeploy
```
The default prebuilt package is compiled on CUDA 12. However, if CUDA 11+ is required, you can install lmdeploy by:
```shell
export LMDEPLOY_VERSION=0.6.0
export PYTHON_VERSION=310
pip install https://github.com/InternLM/lmdeploy/releases/download/v${LMDEPLOY_VERSION}/lmdeploy-${LMDEPLOY_VERSION}+cu118-cp${PYTHON_VERSION}-cp${PYTHON_VERSION}-manylinux2014_x86_64.whl --extra-index-url https://download.pytorch.org/whl/cu118
```
## Evaluation
When evaluating a model, it is necessary to prepare an evaluation configuration that specifies information such as the evaluation dataset, the model, and inference parameters.
Taking [internlm2-chat-7b](https://huggingface.co/internlm/internlm2-chat-7b) as an example, the evaluation config is as follows:
```python
# configure the dataset
from mmengine.config import read_base
with read_base():
# choose a list of datasets
from .datasets.mmlu.mmlu_gen_a484b3 import mmlu_datasets
from .datasets.ceval.ceval_gen_5f30c7 import ceval_datasets
from .datasets.triviaqa.triviaqa_gen_2121ce import triviaqa_datasets
from opencompass.configs.datasets.gsm8k.gsm8k_0shot_v2_gen_a58960 import \
gsm8k_datasets
# and output the results in a chosen format
from .summarizers.medium import summarizer
datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), [])
# configure lmdeploy
from opencompass.models import TurboMindModelwithChatTemplate
# configure the model
models = [
dict(
type=TurboMindModelwithChatTemplate,
abbr=f'internlm2-chat-7b-lmdeploy',
# model path, which can be the address of a model repository on the Hugging Face Hub or a local path
path='internlm/internlm2-chat-7b',
# inference backend of LMDeploy. It can be either 'turbomind' or 'pytorch'.
# If the model is not supported by 'turbomind', it will fallback to
# 'pytorch'
backend='turbomind',
# For the detailed engine config and generation config, please refer to
# https://github.com/InternLM/lmdeploy/blob/main/lmdeploy/messages.py
engine_config=dict(tp=1),
gen_config=dict(do_sample=False),
# the max size of the context window
max_seq_len=7168,
# the max number of new tokens
max_out_len=1024,
# the max number of prompts that LMDeploy receives
# in `generate` function
batch_size=5000,
run_cfg=dict(num_gpus=1),
)
]
```
Place the aforementioned configuration in a file, such as "configs/eval_internlm2_lmdeploy.py". Then, in the home folder of OpenCompass, start evaluation by the following command:
```shell
python run.py configs/eval_internlm2_lmdeploy.py -w outputs
```
You are expected to get the evaluation results after the inference and evaluation.