mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
351 lines
12 KiB
Python
351 lines
12 KiB
Python
import json
|
|
import re
|
|
import time
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
from typing import Dict, List, Optional, Union
|
|
|
|
import numpy as np
|
|
import requests
|
|
|
|
from opencompass.registry import MODELS
|
|
from opencompass.utils.logging import get_logger
|
|
from opencompass.utils.prompt import PromptList
|
|
|
|
from .base import BaseModel
|
|
from .base_api import BaseAPIModel, TokenBucket
|
|
|
|
PromptType = Union[PromptList, str]
|
|
|
|
|
|
@MODELS.register_module()
|
|
class LightllmAPI(BaseModel):
|
|
|
|
is_api: bool = True
|
|
|
|
def __init__(
|
|
self,
|
|
path: str = 'LightllmAPI',
|
|
url: str = 'http://localhost:8080/generate',
|
|
meta_template: Optional[Dict] = None,
|
|
max_workers_per_task: int = 2,
|
|
rate_per_worker: int = 2,
|
|
retry: int = 2,
|
|
generation_kwargs: Optional[Dict] = dict(),
|
|
):
|
|
|
|
super().__init__(path=path,
|
|
meta_template=meta_template,
|
|
generation_kwargs=generation_kwargs)
|
|
self.logger = get_logger()
|
|
self.url = url
|
|
self.retry = retry
|
|
self.generation_kwargs = generation_kwargs
|
|
self.max_out_len = self.generation_kwargs.get('max_new_tokens', 1024)
|
|
self.meta_template = meta_template
|
|
self.max_workers_per_task = max_workers_per_task
|
|
self.token_bucket = TokenBucket(rate_per_worker, False)
|
|
|
|
def generate(self, inputs: List[str], max_out_len: int,
|
|
**kwargs) -> List[str]:
|
|
"""Generate results given a list of inputs.
|
|
|
|
Args:
|
|
inputs (List[str]): A list of strings or PromptDicts.
|
|
The PromptDict should be organized in OpenCompass'
|
|
API format.
|
|
max_out_len (int): The maximum length of the output.
|
|
|
|
Returns:
|
|
List[str]: A list of generated strings.
|
|
"""
|
|
|
|
with ThreadPoolExecutor(
|
|
max_workers=self.max_workers_per_task) as executor:
|
|
results = list(
|
|
executor.map(self._generate, inputs,
|
|
[self.max_out_len] * len(inputs)))
|
|
return results
|
|
|
|
def _generate(self, input: str, max_out_len: int) -> str:
|
|
max_num_retries = 0
|
|
while max_num_retries < self.retry:
|
|
self.wait()
|
|
header = {'content-type': 'application/json'}
|
|
try:
|
|
self.logger.debug(f'input: {input}')
|
|
data = dict(inputs=input, parameters=self.generation_kwargs)
|
|
raw_response = requests.post(self.url,
|
|
headers=header,
|
|
data=json.dumps(data))
|
|
except requests.ConnectionError:
|
|
self.logger.error('Got connection error, retrying...')
|
|
continue
|
|
try:
|
|
response = raw_response.json()
|
|
generated_text = response['generated_text']
|
|
if isinstance(generated_text, list):
|
|
generated_text = generated_text[0]
|
|
self.logger.debug(f'generated_text: {generated_text}')
|
|
return generated_text
|
|
except requests.JSONDecodeError:
|
|
self.logger.error('JsonDecode error, got',
|
|
str(raw_response.content))
|
|
except KeyError:
|
|
self.logger.error(f'KeyError. Response: {str(response)}')
|
|
max_num_retries += 1
|
|
|
|
raise RuntimeError('Calling LightllmAPI failed after retrying for '
|
|
f'{max_num_retries} times. Check the logs for '
|
|
'details.')
|
|
|
|
def get_ppl(self, inputs: List[str], max_out_len: int,
|
|
**kwargs) -> List[float]:
|
|
"""Generate results given a list of inputs.
|
|
|
|
Args:
|
|
inputs (List[str]): A list of strings or PromptDicts.
|
|
The PromptDict should be organized in OpenCompass'
|
|
API format.
|
|
max_out_len (int): The maximum length of the output.
|
|
|
|
Returns:
|
|
List[str]: A list of generated strings.
|
|
"""
|
|
|
|
with ThreadPoolExecutor(
|
|
max_workers=self.max_workers_per_task) as executor:
|
|
results = list(
|
|
executor.map(self._get_ppl, inputs,
|
|
[self.max_out_len] * len(inputs)))
|
|
return np.array(results)
|
|
|
|
def _get_ppl(self, input: str, max_out_len: int) -> float:
|
|
max_num_retries = 0
|
|
if max_out_len is None:
|
|
max_out_len = 1
|
|
while max_num_retries < self.retry:
|
|
self.wait()
|
|
header = {'content-type': 'application/json'}
|
|
try:
|
|
data = dict(inputs=input, parameters=self.generation_kwargs)
|
|
raw_response = requests.post(self.url,
|
|
headers=header,
|
|
data=json.dumps(data))
|
|
except requests.ConnectionError:
|
|
self.logger.error('Got connection error, retrying...')
|
|
continue
|
|
try:
|
|
response = raw_response.json()
|
|
|
|
assert ('prompt_token_ids' in response and 'prompt_logprobs'
|
|
in response), f'prompt_token_ids and prompt_logprobs \
|
|
must be in the output. \
|
|
Please consider adding \
|
|
--return_all_prompt_logprobs argument \
|
|
when starting lightllm service. Response: {str(response)}'
|
|
|
|
prompt_token_ids = response['prompt_token_ids'][1:]
|
|
prompt_logprobs = [
|
|
item[1] for item in response['prompt_logprobs']
|
|
]
|
|
logprobs = [
|
|
item[str(token_id)] for token_id, item in zip(
|
|
prompt_token_ids, prompt_logprobs)
|
|
]
|
|
if len(logprobs) == 0:
|
|
return 0.0
|
|
ce_loss = -sum(logprobs) / len(logprobs)
|
|
return ce_loss
|
|
except requests.JSONDecodeError:
|
|
self.logger.error('JsonDecode error, got',
|
|
str(raw_response.content))
|
|
max_num_retries += 1
|
|
raise RuntimeError('Calling LightllmAPI failed after retrying for '
|
|
f'{max_num_retries} times. Check the logs for '
|
|
'details.')
|
|
|
|
def wait(self):
|
|
"""Wait till the next query can be sent.
|
|
|
|
Applicable in both single-thread and multi-thread environments.
|
|
"""
|
|
return self.token_bucket.get_token()
|
|
|
|
def get_token_len(self, prompt: str) -> int:
|
|
"""Get lengths of the tokenized string. Only English and Chinese
|
|
characters are counted for now. Users are encouraged to override this
|
|
method if more accurate length is needed.
|
|
|
|
Args:
|
|
prompt (str): Input string.
|
|
|
|
Returns:
|
|
int: Length of the input tokens
|
|
"""
|
|
|
|
english_parts = re.findall(r'[A-Za-z0-9]+', prompt)
|
|
chinese_parts = re.findall(r'[\u4e00-\u9FFF]+', prompt)
|
|
|
|
# Count English words
|
|
english_count = sum(len(part.split()) for part in english_parts)
|
|
|
|
# Count Chinese words
|
|
chinese_count = sum(len(part) for part in chinese_parts)
|
|
|
|
return english_count + chinese_count
|
|
|
|
|
|
class LightllmChatAPI(BaseAPIModel):
|
|
"""Model wrapper around YiAPI.
|
|
|
|
Documentation:
|
|
|
|
Args:
|
|
path (str): The name of YiAPI model.
|
|
e.g. `moonshot-v1-32k`
|
|
key (str): Authorization key.
|
|
query_per_second (int): The maximum queries allowed per second
|
|
between two consecutive calls of the API. Defaults to 1.
|
|
max_seq_len (int): Unused here.
|
|
meta_template (Dict, optional): The model's meta prompt
|
|
template if needed, in case the requirement of injecting or
|
|
wrapping of any meta instructions.
|
|
retry (int): Number of retires if the API call fails. Defaults to 2.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
path: str,
|
|
url: str,
|
|
query_per_second: int = 2,
|
|
max_seq_len: int = 2048,
|
|
meta_template: Optional[Dict] = None,
|
|
retry: int = 2,
|
|
):
|
|
super().__init__(path=path,
|
|
max_seq_len=max_seq_len,
|
|
query_per_second=query_per_second,
|
|
meta_template=meta_template,
|
|
retry=retry)
|
|
self.url = url
|
|
self.model = path
|
|
|
|
def generate(
|
|
self,
|
|
inputs: List[PromptType],
|
|
max_out_len: int = 512,
|
|
) -> List[str]:
|
|
"""Generate results given a list of inputs.
|
|
|
|
Args:
|
|
inputs (List[PromptType]): A list of strings or PromptDicts.
|
|
The PromptDict should be organized in OpenCompass'
|
|
API format.
|
|
max_out_len (int): The maximum length of the output.
|
|
|
|
Returns:
|
|
List[str]: A list of generated strings.
|
|
"""
|
|
with ThreadPoolExecutor() as executor:
|
|
results = list(
|
|
executor.map(self._generate, inputs,
|
|
[max_out_len] * len(inputs)))
|
|
self.flush()
|
|
return results
|
|
|
|
def _generate(
|
|
self,
|
|
input: PromptType,
|
|
max_out_len: int = 512,
|
|
) -> str:
|
|
"""Generate results given an input.
|
|
|
|
Args:
|
|
inputs (PromptType): A string or PromptDict.
|
|
The PromptDict should be organized in OpenCompass'
|
|
API format.
|
|
max_out_len (int): The maximum length of the output.
|
|
|
|
Returns:
|
|
str: The generated string.
|
|
"""
|
|
assert isinstance(input, (str, PromptList))
|
|
|
|
if isinstance(input, str):
|
|
messages = [{'role': 'user', 'content': input}]
|
|
else:
|
|
messages = []
|
|
msg_buffer, last_role = [], None
|
|
for item in input:
|
|
item['role'] = 'assistant' if item['role'] == 'BOT' else 'user'
|
|
if item['role'] != last_role and last_role is not None:
|
|
messages.append({
|
|
'content': '\n'.join(msg_buffer),
|
|
'role': last_role
|
|
})
|
|
msg_buffer = []
|
|
msg_buffer.append(item['prompt'])
|
|
last_role = item['role']
|
|
messages.append({
|
|
'content': '\n'.join(msg_buffer),
|
|
'role': last_role
|
|
})
|
|
|
|
data = {'messages': messages}
|
|
|
|
max_num_retries = 0
|
|
while max_num_retries < self.retry:
|
|
self.acquire()
|
|
try:
|
|
raw_response = requests.request('POST',
|
|
url=self.url,
|
|
json=data)
|
|
except Exception as err:
|
|
print('Request Error:{}'.format(err))
|
|
time.sleep(2)
|
|
continue
|
|
|
|
try:
|
|
response = raw_response.json()
|
|
except Exception as err:
|
|
print('Response Error:{}'.format(err))
|
|
response = None
|
|
self.release()
|
|
|
|
if response is None:
|
|
print('Connection error, reconnect.')
|
|
# if connect error, frequent requests will casuse
|
|
# continuous unstable network, therefore wait here
|
|
# to slow down the request
|
|
self.wait()
|
|
continue
|
|
|
|
if raw_response.status_code == 200:
|
|
# msg = json.load(response.text)
|
|
# response
|
|
msg = response['choices'][0]['message']['content']
|
|
self.logger.debug(f'Generated: {msg}')
|
|
return msg
|
|
|
|
if raw_response.status_code == 401:
|
|
print('请求被拒绝 api_key错误')
|
|
continue
|
|
elif raw_response.status_code == 400:
|
|
print(messages, response)
|
|
print('请求失败,状态码:', raw_response)
|
|
msg = 'The request was rejected because high risk'
|
|
return msg
|
|
elif raw_response.status_code == 429:
|
|
print(messages, response)
|
|
print('请求失败,状态码:', raw_response)
|
|
time.sleep(5)
|
|
continue
|
|
else:
|
|
print(messages, response)
|
|
print('请求失败,状态码:', raw_response)
|
|
time.sleep(1)
|
|
|
|
max_num_retries += 1
|
|
|
|
raise RuntimeError(raw_response)
|