OpenCompass/opencompass/models/turbomind.py
Lyu Han 4fde41036f
[Feature] Update TurboMindModel by integrating lmdeploy pipeline API (#1556)
* integrate lmdeploy's pipeline api

* fix linting

* update user guide

* rename

* update

* update

* update

* rollback class name

* update

* remove unused code

* update

* update

* use pipeline

* fix ci check

* compatibility

* compatibility

* remove concurrency

* update

* fix table content

* update
2024-10-14 15:33:40 +08:00

227 lines
8.4 KiB
Python

import copy
from typing import Dict, List, Optional, Union
import numpy as np
from opencompass.models.base import BaseModel
from opencompass.utils.logging import get_logger
from opencompass.utils.prompt import PromptList
from .huggingface_above_v4_33 import _get_possible_max_seq_len
PromptType = Union[PromptList, str]
def valid_str(string, coding='utf-8'):
"""decode text according to its encoding type."""
invalid_chars = [b'\xef\xbf\xbd']
bstr = bytes(string, coding)
for invalid_char in invalid_chars:
bstr = bstr.replace(invalid_char, b'')
ret = bstr.decode(encoding=coding, errors='ignore')
return ret
class TurboMindModel(BaseModel):
"""Model wrapper for TurboMind Python API.
Args:
path (str): path of the turbomind model
backend (str): The infernce backend, which can be either 'turbomind' or
'pytorch'. It will fallback to 'pytorch' once the model is not
supported by 'turbomind'
max_seq_len (int): The maximum allowed sequence length of a model.
Note that the length of prompt + generated tokens shall not exceed
this value. Defaults to 2048.
meta_template (Dict, optional): The model's meta prompt
template if needed, in case the requirement of injecting or
wrapping of any meta instructions.
engine_config (Dict, optional): The engine config to set
arguments like session_len, max_batch_size for TurboMind.
gen_config (Dict, optional): Generation config to set
arguments like top_k, top_p, temperature.
end_str (str, optional): Whether to trim generated strings with end_str
if the model has special ending strings that are not handled well.
Defaults to None.
"""
def __init__(self,
path: str,
backend: str = 'turbomind',
max_seq_len: int = 2048,
meta_template: Optional[Dict] = None,
engine_config: Dict = {},
gen_config: Dict = {},
batch_padding: bool = False,
end_str: Optional[str] = None):
super().__init__(path=path,
max_seq_len=max_seq_len,
meta_template=meta_template)
self.logger = get_logger()
self.max_seq_len = _get_possible_max_seq_len(max_seq_len, path)
from lmdeploy import version_info
from transformers import AutoTokenizer
self.version_info = version_info
self.tokenizer = AutoTokenizer.from_pretrained(path,
trust_remote_code=True)
DEFAULT_ENGING_CONFIG = {'session_len': self.max_seq_len}
_engine_config = DEFAULT_ENGING_CONFIG.copy()
_engine_config.update(engine_config)
self.pipe = self._build_pipe(path, backend, _engine_config)
self.gen_config = gen_config
self.batch_padding = batch_padding
self.end_str = end_str
def generate(self,
inputs: List[str],
max_out_len: int = 512,
stopping_criteria: List[str] = [],
do_sample: Optional[bool] = None,
temperature: int = 1,
**kwargs) -> List[str]:
"""Generate results given a list of inputs.
Args:
inputs (List[str]): A list of prompts
max_out_len (int): The maximum length of the output.
Returns:
List[str]: A list of generated strings.
"""
assert isinstance(
inputs, List), f'List(str) is expected, but got {type(inputs)}'
stop_words = list(set(stopping_criteria))
DEFAULT_GEN_CONFIG = {
'max_new_tokens': max_out_len,
'min_new_tokens': 1,
'stop_words': stop_words,
}
gen_config = copy.deepcopy(DEFAULT_GEN_CONFIG)
gen_config.update(self.gen_config)
if do_sample:
gen_config['top_k'] = 40
gen_config['temperature'] = temperature
else:
if self.version_info >= (0, 6, 0):
gen_config['do_sample'] = False
else:
gen_config['top_k'] = 1
from lmdeploy import GenerationConfig
gen_config = {
k: v
for k, v in gen_config.items() if hasattr(GenerationConfig, k)
}
gen_config = GenerationConfig(**gen_config)
results = []
outputs = self.pipe(inputs, gen_config=gen_config, do_preprocess=False)
for output in outputs:
text = self.tokenizer.decode(output.token_ids)
results.append(text)
for s in stop_words:
results = [r.split(s)[0] for r in results]
return results
def get_token_len(self, prompt: str) -> int:
input_ids = self.tokenizer.encode(prompt)
return len(input_ids)
def wait(self):
"""Wait till the next query can be sent.
Applicable in both single-thread and multi-thread environments.
"""
return self.token_bucket.get_token()
def get_ppl(self,
inputs: List[str],
mask_length: Optional[List[int]] = None) -> np.ndarray:
"""Get perplexity scores given a list of inputs.
Args:
inputs (List[str]): A list of strings.
mask_length (Optional[List[int]]): A list of mask lengths. If
provided, the perplexity scores will be calculated with the
first mask_length[i] tokens masked out. It's okay to skip
its implementation if advanced features in PPLInfernecer is
not needed.
Returns:
np.ndarray: The perplexity scores in shape of (N,)
"""
assert isinstance(
inputs, List), f'List(str) is expected, but got {type(inputs)}'
results = []
if self.version_info <= (0, 6, 0):
for text in inputs:
input_ids = self.tokenizer.encode(text)
res = self.pipe.get_ppl(input_ids)
results.append(res)
results = np.concatenate(results)
else:
if self.batch_padding and len(inputs) > 1:
assert self.tokenizer.pad_token
input_ids = self.tokenizer(
inputs,
padding=True,
truncation=True,
max_length=self.max_seq_len)['input_ids']
else:
input_ids = [
self.tokenizer(text)['input_ids'] for text in inputs
]
for i in range(0, len(input_ids), 128):
results.append(self.pipe.get_ppl(input_ids[i:i + 128]))
results = np.concatenate(results)
return results
def get_loglikelihood(
self,
inputs: List[str],
conts: List[str],
mask_length: Optional[List[int]] = None) -> List[float]:
assert isinstance(
inputs, List), f'List(str) is expected, but got {type(inputs)}'
results = []
for text, cont in zip(inputs, conts):
input_ids = self.tokenizer.encode(text)
res = self.pipe.get_ppl(input_ids)
logit_sum = res * len(input_ids)
input_ids = self.tokenizer.encode(text.replace(cont, ''))
res = self.pipe.get_ppl(input_ids)
logit_part = res * len(input_ids)
results.append(-(logit_sum - logit_part))
results = np.concatenate(results)
return results
def _build_pipe(self, model_path, backend, engine_config):
assert backend in ['pytorch', 'turbomind'], \
f'unsupported backend type: {backend}'
from lmdeploy import (PytorchEngineConfig, TurbomindEngineConfig,
pipeline)
if backend == 'turbomind':
filtered = {
k: v
for k, v in engine_config.items()
if hasattr(TurbomindEngineConfig, k)
}
backend_config = TurbomindEngineConfig(**filtered)
else:
filtered = {
k: v
for k, v in engine_config.items()
if hasattr(PytorchEngineConfig, k)
}
backend_config = PytorchEngineConfig(**filtered)
return pipeline(model_path,
backend_config=backend_config,
log_level='INFO',
max_log_len=10)