OpenCompass/opencompass/summarizers/subject.py
bittersweet1999 1c95790fdd
New subjective judgement (#660)
* TabMWP

* TabMWP

* fixed

* fixed

* fixed

* done

* done

* done

* add new subjective judgement

* add new subjective judgement

* add new subjective judgement

* add new subjective judgement

* add new subjective judgement

* modified to a more general way

* modified to a more general way

* final

* final

* add summarizer

* add new summarize

* fixed

* fixed

* fixed

---------

Co-authored-by: caomaosong <caomaosong@pjlab.org.cn>
2023-12-06 13:28:33 +08:00

81 lines
2.9 KiB
Python

import csv
import os
import os.path as osp
from datetime import datetime
import mmengine
from mmengine import ConfigDict
try:
from prettytable import from_csv
except ImportError:
from_csv = None
from opencompass.utils import dataset_abbr_from_cfg
class SubjectSummarizer:
"""Do the subjectivity analyze based on evaluation results.
Args:
config (ConfigDict): The configuration object of the evaluation task.
It's expected to be filled out at runtime.
"""
def __init__(
self,
config: ConfigDict,
) -> None:
self.tasks = []
self.cfg = config
def summarize(self,
time_str: str = datetime.now().strftime('%Y%m%d_%H%M%S')):
"""Summarize the subjectivity analysis based on evaluation results.
Args:
time_str (str): Timestamp for file naming.
Returns:
pd.DataFrame: The summary results.
"""
dataset_cfgs = self.cfg['datasets']
work_dir = self.cfg['work_dir']
self.work_dir = work_dir
self.time_str = time_str
output_path = osp.join(self.work_dir, 'summary',
f'summary_{self.time_str}.txt')
output_dir = osp.join(osp.split(output_path)[0], f'{self.time_str}')
mmengine.mkdir_or_exist(output_dir)
results_folder = osp.join(work_dir, 'results')
for subdir in os.listdir(results_folder):
subdir_path = os.path.join(results_folder, subdir)
if os.path.isdir(subdir_path):
for dataset in dataset_cfgs:
model1, model2 = dataset['eval_cfg']['evaluator'][
'base_model'], dataset['eval_cfg']['evaluator'][
'compare_model']
dataset_abbr = dataset_abbr_from_cfg(dataset)
filepath = os.path.join(subdir_path,
dataset_abbr + '.json')
result = mmengine.load(filepath)
rows = list(result.keys())
columns = list(result[rows[0]].keys())
fout = osp.join(output_dir,
model1 + '_vs_' + model2 + '.csv')
print(
'###############################Subjective Results on '
+ model1 + '_vs_' + model2 +
'###############################')
with open(fout, 'w', newline='') as csvfile:
writer = csv.writer(csvfile)
writer.writerow([model1 + '_vs_' + model2] + columns)
for row in rows:
writer.writerow(
[row] +
[result[row][column] for column in columns])
with open(fout, 'r') as f:
x = from_csv(f)
print(x)