mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
72 lines
2.6 KiB
Python
72 lines
2.6 KiB
Python
import re
|
|
from collections import Counter
|
|
|
|
from datasets import load_dataset
|
|
|
|
from opencompass.openicl.icl_evaluator import BaseEvaluator
|
|
from opencompass.utils.text_postprocessors import general_postprocess
|
|
|
|
from .base import BaseDataset
|
|
|
|
|
|
class TydiQADataset(BaseDataset):
|
|
|
|
@staticmethod
|
|
def load(**kwargs):
|
|
dataset = load_dataset(**kwargs)
|
|
|
|
def pre_process(example):
|
|
example['answer'] = example['answers']['text']
|
|
return example
|
|
|
|
dataset = dataset.map(pre_process).remove_columns(['id', 'answers'])
|
|
return dataset
|
|
|
|
|
|
class TydiQAEvaluator(BaseEvaluator):
|
|
# This evaluation class is edited from:
|
|
# https://github.com/allenai/bi-att-flow/blob/master/squad/evaluate-v1.1.py
|
|
def f1_score(self, prediction, ground_truth):
|
|
prediction_tokens = general_postprocess(prediction).split()
|
|
ground_truth_tokens = general_postprocess(ground_truth).split()
|
|
common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
|
|
num_same = sum(common.values())
|
|
if num_same == 0:
|
|
return 0
|
|
precision = 1.0 * num_same / len(prediction_tokens)
|
|
recall = 1.0 * num_same / len(ground_truth_tokens)
|
|
f1 = (2 * precision * recall) / (precision + recall)
|
|
return f1
|
|
|
|
def exact_match_score(self, prediction, ground_truth):
|
|
return (general_postprocess(prediction) == general_postprocess(
|
|
ground_truth))
|
|
|
|
def metric_max_over_ground_truths(self, metric_fn, prediction,
|
|
ground_truths):
|
|
scores_for_ground_truths = []
|
|
for ground_truth in ground_truths:
|
|
score = metric_fn(prediction, ground_truth)
|
|
scores_for_ground_truths.append(score)
|
|
return max(scores_for_ground_truths)
|
|
|
|
def score(self, predictions, references):
|
|
f1 = exact_match = total = 0
|
|
if len(predictions) != len(references):
|
|
return {
|
|
'error': 'predictions and references have different '
|
|
'length'
|
|
}
|
|
for prediction, reference in zip(predictions, references):
|
|
prediction = re.split(r'[\n]', prediction, 1)[0].lower()
|
|
exact_match += self.metric_max_over_ground_truths(
|
|
self.exact_match_score, prediction, reference)
|
|
f1 += self.metric_max_over_ground_truths(self.f1_score, prediction,
|
|
reference)
|
|
total += 1
|
|
|
|
exact_match = 100.0 * exact_match / total
|
|
f1 = 100.0 * f1 / total
|
|
|
|
return {'exact_match': exact_match, 'f1': f1}
|