mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00

* updaste * update * update * update * update * update * update * update * update * update * updaste * update * update * refactor summarize * update * update * update * update * update * updaste * update * update * update * update * updaste * update * update * update * update * update * updaste * updaste * update * update * update * update * update * update * update * update * update * update * update * Update daily-run-test.yml * Update daily-run-test.yml * update * update * update * update * update * Update daily-run-test.yml * update * update * update * update * update * update * update * update * update * update * update * Update daily-run-test.yml * Update daily-run-test.yml * update * update * Update daily-run-test.yml * update * update * update --------- Co-authored-by: zhulin1 <zhulin1@pjlab.org.cn>
355 lines
15 KiB
Python
355 lines
15 KiB
Python
import csv
|
|
import os
|
|
|
|
import pytest
|
|
import yaml
|
|
|
|
output_path = 'regression_result_daily'
|
|
|
|
chat_model_list = [
|
|
'baichuan2-7b-chat-hf', 'glm-4-9b-chat-hf', 'glm-4-9b-chat-turbomind',
|
|
'glm-4-9b-chat-vllm', 'deepseek-7b-chat-hf', 'deepseek-moe-16b-chat-hf',
|
|
'deepseek-7b-chat-vllm', 'gemma2-2b-it-hf', 'gemma2-9b-it-hf',
|
|
'gemma-2b-it-hf', 'gemma-7b-it-hf', 'gemma-2-9b-it-turbomind',
|
|
'gemma-7b-it-vllm', 'internlm2_5-7b-chat-hf',
|
|
'internlm2_5-7b-chat-turbomind', 'internlm2-chat-1.8b-turbomind',
|
|
'internlm2-chat-1.8b-sft-turbomind', 'internlm2-chat-7b-lmdeploy',
|
|
'internlm2-chat-7b-sft-turbomind', 'internlm2-chat-7b-vllm',
|
|
'llama-3_1-8b-instruct-hf', 'llama-3_2-3b-instruct-hf',
|
|
'llama-3-8b-instruct-hf', 'llama-3_1-8b-instruct-turbomind',
|
|
'llama-3_2-3b-instruct-turbomind', 'llama-3-8b-instruct-turbomind',
|
|
'mistral-7b-instruct-v0.2-hf', 'mistral-7b-instruct-v0.3-hf',
|
|
'mistral-nemo-instruct-2407-hf', 'mistral-nemo-instruct-2407-turbomind',
|
|
'mistral-7b-instruct-v0.1-vllm', 'mistral-7b-instruct-v0.2-vllm',
|
|
'MiniCPM3-4B-hf', 'minicpm-2b-dpo-fp32-hf', 'minicpm-2b-sft-bf16-hf',
|
|
'minicpm-2b-sft-fp32-hf', 'phi-3-mini-4k-instruct-hf',
|
|
'qwen1.5-0.5b-chat-hf', 'qwen2-1.5b-instruct-hf', 'qwen2-7b-instruct-hf',
|
|
'qwen2-1.5b-instruct-turbomind', 'qwen2-7b-instruct-turbomind',
|
|
'qwen1.5-0.5b-chat-vllm', 'yi-1.5-6b-chat-hf', 'yi-1.5-9b-chat-hf',
|
|
'deepseek-v2-lite-chat-hf', 'internlm2_5-20b-chat-hf',
|
|
'internlm2_5-20b-chat-turbomind', 'mistral-small-instruct-2409-hf',
|
|
'mistral-small-instruct-2409-turbomind', 'qwen2.5-14b-instruct-hf',
|
|
'qwen2.5-14b-instruct-turbomind'
|
|
]
|
|
base_model_list = [
|
|
'glm-4-9b-hf', 'deepseek-moe-16b-base-hf', 'deepseek-7b-base-turbomind',
|
|
'deepseek-moe-16b-base-vllm', 'gemma2-2b-hf', 'gemma2-9b-hf',
|
|
'gemma-2b-hf', 'gemma-7b-hf', 'gemma-2b-vllm', 'gemma-7b-vllm',
|
|
'internlm2_5-7b-hf', 'internlm2-7b-hf', 'internlm2-base-7b-hf',
|
|
'internlm2-1.8b-turbomind', 'internlm2_5-7b-turbomind',
|
|
'internlm2-7b-turbomind', 'internlm2-base-7b-turbomind', 'llama-2-7b-hf',
|
|
'llama-3_1-8b-hf', 'llama-3-8b-hf', 'llama-3.1-8b-turbomind',
|
|
'llama-3-8b-turbomind', 'mistral-7b-v0.2-hf', 'mistral-7b-v0.3-hf',
|
|
'mistral-7b-v0.2-vllm', 'qwen2.5-7b-hf', 'qwen2.5-1.5b-turbomind',
|
|
'qwen2.5-7b-turbomind', 'qwen1.5-moe-a2.7b-hf', 'qwen2-0.5b-hf',
|
|
'qwen2-1.5b-hf', 'qwen2-7b-hf', 'qwen2-1.5b-turbomind',
|
|
'qwen2-7b-turbomind', 'qwen1.5-0.5b-vllm', 'yi-1.5-6b-hf', 'yi-1.5-9b-hf',
|
|
'deepseek-v2-lite-hf', 'internlm2-20b-hf', 'internlm2-base-20b-hf',
|
|
'internlm2-20b-turbomind', 'qwen2.5-14b-hf'
|
|
]
|
|
|
|
|
|
@pytest.fixture()
|
|
def baseline_scores_testrange(request):
|
|
config_path = os.path.join(
|
|
request.config.rootdir,
|
|
'.github/scripts/oc_score_baseline_testrange.yaml')
|
|
with open(config_path) as f:
|
|
config = yaml.load(f.read(), Loader=yaml.SafeLoader)
|
|
return config
|
|
|
|
|
|
@pytest.fixture()
|
|
def baseline_scores(request):
|
|
config_path = os.path.join(request.config.rootdir,
|
|
'.github/scripts/oc_score_baseline.yaml')
|
|
with open(config_path) as f:
|
|
config = yaml.load(f.read(), Loader=yaml.SafeLoader)
|
|
return config
|
|
|
|
|
|
@pytest.fixture()
|
|
def baseline_scores_fullbench(request):
|
|
config_path = os.path.join(
|
|
request.config.rootdir,
|
|
'.github/scripts/oc_score_baseline_fullbench.yaml')
|
|
with open(config_path) as f:
|
|
config = yaml.load(f.read(), Loader=yaml.SafeLoader)
|
|
return config
|
|
|
|
|
|
@pytest.fixture()
|
|
def result_scores():
|
|
file = find_csv_files(output_path)
|
|
if file is None:
|
|
return None
|
|
return read_csv_file(file)
|
|
|
|
|
|
@pytest.mark.usefixtures('result_scores')
|
|
@pytest.mark.usefixtures('baseline_scores_testrange')
|
|
@pytest.mark.chat
|
|
class TestChat:
|
|
"""Test cases for chat model."""
|
|
|
|
@pytest.mark.parametrize('model, dataset',
|
|
[(p1, p2) for p1 in chat_model_list
|
|
for p2 in ['gsm8k', 'race-high']])
|
|
def test_model_dataset_score(self, baseline_scores_testrange,
|
|
result_scores, model, dataset):
|
|
base_score = baseline_scores_testrange.get(model).get(dataset)
|
|
result_score = result_scores.get(model).get(dataset)
|
|
assert_score(model, result_score, base_score)
|
|
|
|
|
|
@pytest.mark.usefixtures('result_scores')
|
|
@pytest.mark.usefixtures('baseline_scores_testrange')
|
|
@pytest.mark.base
|
|
class TestBase:
|
|
"""Test cases for base model."""
|
|
|
|
@pytest.mark.parametrize(
|
|
'model, dataset',
|
|
[(p1, p2) for p1 in base_model_list
|
|
for p2 in ['gsm8k', 'GPQA_diamond', 'race-high', 'winogrande']])
|
|
def test_model_dataset_score(self, baseline_scores_testrange,
|
|
result_scores, model, dataset):
|
|
if model in ['gemma-2b-vllm', 'gemma-7b-vllm'] and dataset != 'gsm8k':
|
|
return
|
|
base_score = baseline_scores_testrange.get(model).get(dataset)
|
|
result_score = result_scores.get(model).get(dataset)
|
|
assert_score(model, result_score, base_score)
|
|
|
|
|
|
@pytest.mark.usefixtures('result_scores')
|
|
@pytest.mark.usefixtures('baseline_scores_fullbench')
|
|
@pytest.mark.chat_obj_fullbench
|
|
class TestChatObjFullbench:
|
|
"""Test cases for chat model."""
|
|
|
|
@pytest.mark.parametrize('model, dataset', [(p1, p2) for p1 in [
|
|
'internlm2_5-7b-chat-hf_fullbench',
|
|
'internlm2_5-7b-chat-turbomind_fullbench'
|
|
] for p2 in [
|
|
'race-high', 'ARC-c', 'BoolQ', 'drop', 'GPQA_diamond', 'math',
|
|
'wikibench-wiki-single_choice_cncircular', 'sanitized_mbpp', 'ds1000',
|
|
'gsm8k', 'triviaqa_wiki_1shot', 'nq_open_1shot', 'hellaswag',
|
|
'TheoremQA', 'college', 'college_knowledge',
|
|
'bbh-logical_deduction_seven_objects', 'bbh-multistep_arithmetic_two',
|
|
'mmlu-other', 'cmmlu-china-specific', 'mmlu_pro_math', 'ds1000_Pandas',
|
|
'ds1000_Numpy', 'ds1000_Tensorflow', 'ds1000_Scipy', 'ds1000_Sklearn',
|
|
'ds1000_Pytorch', 'ds1000_Matplotlib'
|
|
]])
|
|
def test_model_dataset_score(self, baseline_scores_fullbench,
|
|
result_scores, model, dataset):
|
|
base_score = baseline_scores_fullbench.get(model).get(dataset)
|
|
result_score = result_scores.get(model).get(dataset)
|
|
assert_score(model, result_score, base_score)
|
|
|
|
|
|
@pytest.mark.usefixtures('result_scores')
|
|
@pytest.mark.usefixtures('baseline_scores_fullbench')
|
|
@pytest.mark.chat_sub_fullbench
|
|
class TestChatSubFullbench:
|
|
"""Test cases for chat model."""
|
|
|
|
@pytest.mark.parametrize('model, dataset', [(p1, p2) for p1 in [
|
|
'internlm2_5-7b-chat-hf_fullbench',
|
|
'internlm2_5-7b-chat-turbomind_fullbench'
|
|
] for p2 in [
|
|
'Alignbench总分', 'Alignbench专业能力', 'AlpacaEvaltotal',
|
|
'AlpacaEvalhelpful_base', 'CompassArenacompassarena_language',
|
|
'CompassArenacompassarena_knowledge',
|
|
'CompassArenacompassarena_reason_v2',
|
|
'CompassArenacompassarena_math_v2',
|
|
'CompassArenacompassarena_creationv2_zh', 'Fofofofo_test_prompts',
|
|
'followbenchHSR_AVG', 'followbenchSSR_AVG', 'followbenchHSR_L1',
|
|
'followbenchHSR_L2', 'followbenchHSR_L3', 'followbenchHSR_L4',
|
|
'followbenchHSR_L5', 'followbenchSSR_L1', 'followbenchSSR_L2',
|
|
'followbenchSSR_L3', 'followbenchSSR_L4', 'followbenchSSR_L5',
|
|
'MTBench101average', 'Wildbenchscore'
|
|
]])
|
|
def test_model_dataset_score(self, baseline_scores_fullbench,
|
|
result_scores, model, dataset):
|
|
base_score = baseline_scores_fullbench.get(model).get(dataset)
|
|
result_score = result_scores.get(model).get(dataset)
|
|
assert_score(model, result_score, base_score)
|
|
|
|
|
|
@pytest.mark.usefixtures('result_scores')
|
|
@pytest.mark.usefixtures('baseline_scores_fullbench')
|
|
@pytest.mark.base_fullbench
|
|
class TestBaseFullbench:
|
|
"""Test cases for chat model."""
|
|
|
|
@pytest.mark.parametrize('model, dataset', [(p1, p2) for p1 in [
|
|
'internlm2_5-7b-hf_fullbench', 'internlm2_5-7b-turbomind_fullbench'
|
|
] for p2 in [
|
|
'race-high', 'ARC-c', 'BoolQ', 'drop', 'GPQA_diamond', 'math',
|
|
'wikibench-wiki-single_choice_cncircular', 'sanitized_mbpp', 'gsm8k',
|
|
'triviaqa_wiki_1shot', 'nq_open_1shot', 'winogrande', 'hellaswag',
|
|
'TheoremQA', 'college', 'college_knowledge',
|
|
'bbh-logical_deduction_seven_objects', 'bbh-multistep_arithmetic_two',
|
|
'mmlu-other', 'cmmlu-china-specific', 'mmlu_pro_math'
|
|
]])
|
|
def test_model_dataset_score(self, baseline_scores_fullbench,
|
|
result_scores, model, dataset):
|
|
base_score = baseline_scores_fullbench.get(model).get(dataset)
|
|
result_score = result_scores.get(model).get(dataset)
|
|
assert_score(model, result_score, base_score)
|
|
|
|
|
|
@pytest.mark.usefixtures('result_scores')
|
|
@pytest.mark.usefixtures('baseline_scores')
|
|
@pytest.mark.api
|
|
class TestApibench:
|
|
"""Test cases for chat model."""
|
|
|
|
@pytest.mark.parametrize('model, dataset',
|
|
[('lmdeploy-api-test', 'race-middle'),
|
|
('lmdeploy-api-test', 'race-high'),
|
|
('lmdeploy-api-test', 'gsm8k')])
|
|
def test_api(self, baseline_scores, result_scores, model, dataset):
|
|
base_score = baseline_scores.get(model).get(dataset)
|
|
result_score = result_scores.get(model).get(dataset)
|
|
assert_score(model + '_batch', result_score, base_score)
|
|
|
|
|
|
@pytest.mark.usefixtures('result_scores')
|
|
@pytest.mark.usefixtures('baseline_scores')
|
|
class TestCmdCase:
|
|
|
|
@pytest.mark.case1
|
|
@pytest.mark.parametrize('model, dataset',
|
|
[('internlm2_5-7b-hf', 'race-middle'),
|
|
('internlm2_5-7b-hf', 'race-high'),
|
|
('internlm2_5-7b-hf', 'demo_gsm8k'),
|
|
('internlm2-1.8b-hf', 'race-middle'),
|
|
('internlm2-1.8b-hf', 'race-high'),
|
|
('internlm2-1.8b-hf', 'demo_gsm8k')])
|
|
def test_cmd_case1(self, baseline_scores, result_scores, model, dataset):
|
|
base_score = baseline_scores.get(model).get(dataset)
|
|
result_score = result_scores.get(model).get(dataset)
|
|
assert_score(model, result_score, base_score)
|
|
|
|
@pytest.mark.case2
|
|
@pytest.mark.parametrize('model, dataset',
|
|
[('internlm2_5-7b-chat-lmdeploy', 'race-middle'),
|
|
('internlm2_5-7b-chat-lmdeploy', 'race-high'),
|
|
('internlm2_5-7b-chat-lmdeploy', 'demo_gsm8k'),
|
|
('internlm2-chat-1.8b-lmdeploy', 'race-middle'),
|
|
('internlm2-chat-1.8b-lmdeploy', 'race-high'),
|
|
('internlm2-chat-1.8b-lmdeploy', 'demo_gsm8k')])
|
|
def test_cmd_case2(self, baseline_scores, result_scores, model, dataset):
|
|
base_score = baseline_scores.get(model).get(dataset)
|
|
result_score = result_scores.get(model).get(dataset)
|
|
assert_score(model + '_batch', result_score, base_score)
|
|
|
|
@pytest.mark.case3
|
|
@pytest.mark.parametrize('model, dataset',
|
|
[('internlm2_5-7b_hf', 'race-middle'),
|
|
('internlm2_5-7b_hf', 'race-high'),
|
|
('internlm2_5-7b_hf', 'demo_gsm8k')])
|
|
def test_cmd_case3(self, baseline_scores, result_scores, model, dataset):
|
|
base_score = baseline_scores.get(model).get(dataset)
|
|
result_score = result_scores.get(model).get(dataset)
|
|
assert_score(model, result_score, base_score)
|
|
|
|
@pytest.mark.case4
|
|
@pytest.mark.parametrize('model, dataset',
|
|
[('internlm2_5-7b-chat_hf', 'race-middle'),
|
|
('internlm2_5-7b-chat_hf', 'race-high'),
|
|
('internlm2_5-7b-chat_hf', 'demo_gsm8k')])
|
|
def test_cmd_case4(self, baseline_scores, result_scores, model, dataset):
|
|
base_score = baseline_scores.get(model).get(dataset)
|
|
result_score = result_scores.get(model).get(dataset)
|
|
assert_score(model, result_score, base_score)
|
|
|
|
|
|
THRESHOLD = 3
|
|
|
|
|
|
def assert_score(model_type, score, baseline):
|
|
if score is None or score == '-':
|
|
assert False, 'value is none'
|
|
|
|
if 'batch' not in model_type:
|
|
if float(score) <= (baseline + 0.01) and float(score) >= (baseline -
|
|
0.01):
|
|
print(' '.join([score, 'is equal', str(baseline)]))
|
|
assert True
|
|
else:
|
|
print(' '.join([score, 'is not equal', str(baseline)]))
|
|
assert False, ' '.join([score, 'is not equal', str(baseline)])
|
|
else:
|
|
if float(score) <= (baseline + THRESHOLD) and float(score) >= (
|
|
baseline - THRESHOLD):
|
|
print(' '.join([
|
|
score, 'is between',
|
|
str(baseline - THRESHOLD), 'and',
|
|
str(baseline + THRESHOLD)
|
|
]))
|
|
assert True
|
|
else:
|
|
print(' '.join([
|
|
score, 'is not etween',
|
|
str(baseline - THRESHOLD), 'and',
|
|
str(baseline + THRESHOLD)
|
|
]))
|
|
assert False, ' '.join([
|
|
score, 'is not etween',
|
|
str(baseline - THRESHOLD), 'and',
|
|
str(baseline + THRESHOLD)
|
|
])
|
|
|
|
|
|
def find_csv_files(directory):
|
|
csv_files = []
|
|
for root, dirs, files in os.walk(directory):
|
|
for file in files:
|
|
if file.endswith('.csv') and (file.startswith('summary') or
|
|
file.startswith('Subjective_all')):
|
|
csv_files.append(os.path.join(root, file))
|
|
|
|
csv_files_with_time = {f: os.path.getctime(f) for f in csv_files}
|
|
sorted_csv_files = sorted(csv_files_with_time.items(), key=lambda x: x[1])
|
|
latest_csv_file = sorted_csv_files[-1][0]
|
|
return latest_csv_file
|
|
|
|
|
|
def read_csv_file(file_path):
|
|
with open(file_path, 'r') as csvfile:
|
|
reader = csv.DictReader(csvfile)
|
|
filtered_data = []
|
|
if 'Subjective_all' not in file_path:
|
|
for row in reader:
|
|
if row['metric'] is not None and 'bpb' not in row['metric']:
|
|
filtered_row = {
|
|
k: v
|
|
for k, v in row.items()
|
|
if k not in ['version', 'metric', 'mode']
|
|
}
|
|
filtered_data.append(filtered_row)
|
|
else:
|
|
for row in reader:
|
|
if row['Detailed Scores'] is not None:
|
|
filtered_row = row
|
|
filtered_row['dataset'] = filtered_row[
|
|
'Dataset'] + filtered_row['Detailed Scores']
|
|
del filtered_row['Dataset']
|
|
del filtered_row['Detailed Scores']
|
|
filtered_data.append(filtered_row)
|
|
|
|
result = {}
|
|
for data in filtered_data:
|
|
dataset = data.get('dataset')
|
|
for key in data.keys():
|
|
if key == 'dataset':
|
|
continue
|
|
else:
|
|
if key in result.keys():
|
|
result.get(key)[dataset] = data.get(key)
|
|
else:
|
|
result[key] = {dataset: data.get(key)}
|
|
return result
|