OpenCompass/configs/subjective_score.py
2023-12-12 09:22:08 +08:00

96 lines
3.0 KiB
Python

from mmengine.config import read_base
with read_base():
from .models.qwen.hf_qwen_7b_chat import models as hf_qwen_7b_chat
from .models.qwen.hf_qwen_14b_chat import models as hf_qwen_14b_chat
from .models.chatglm.hf_chatglm3_6b import models as hf_chatglm3_6b
from .models.baichuan.hf_baichuan2_7b_chat import models as hf_baichuan2_7b
from .models.hf_internlm.hf_internlm_chat_7b import models as hf_internlm_chat_7b
from .models.hf_internlm.hf_internlm_chat_20b import models as hf_internlm_chat_20b
from .datasets.subjective_cmp.subjective_creation import subjective_datasets
datasets = [*subjective_datasets]
from opencompass.models import HuggingFaceCausalLM, HuggingFace, OpenAI
from opencompass.partitioners import NaivePartitioner
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
from opencompass.runners import LocalRunner
from opencompass.runners import SlurmSequentialRunner
from opencompass.tasks import OpenICLInferTask
from opencompass.tasks.subjective_eval import SubjectiveEvalTask
from opencompass.summarizers import Creationv01Summarizer
models = [*hf_baichuan2_7b, *hf_chatglm3_6b, *hf_internlm_chat_20b, *hf_qwen_7b_chat, *hf_internlm_chat_7b, *hf_qwen_14b_chat]
api_meta_template = dict(
round=[
dict(role='HUMAN', api_role='HUMAN'),
dict(role='BOT', api_role='BOT', generate=True)
],
reserved_roles=[
dict(role='SYSTEM', api_role='SYSTEM'),
],
)
infer = dict(
partitioner=dict(type=NaivePartitioner),
runner=dict(
type=SlurmSequentialRunner,
partition='llmeval',
quotatype='auto',
max_num_workers=256,
task=dict(type=OpenICLInferTask)),
)
_meta_template = dict(
round=[
dict(role="HUMAN", begin='\n<|im_start|>user\n', end='<|im_end|>'),
dict(role="BOT", begin="\n<|im_start|>assistant\n", end='<|im_end|>', generate=True),
],
)
judge_model = dict(
type=HuggingFaceCausalLM,
abbr='qwen-7b-chat-hf',
path="Qwen/Qwen-7B-Chat",
tokenizer_path='Qwen/Qwen-7B-Chat',
model_kwargs=dict(
device_map='auto',
trust_remote_code=True
),
tokenizer_kwargs=dict(
padding_side='left',
truncation_side='left',
trust_remote_code=True,
use_fast=False,),
pad_token_id=151643,
max_out_len=2048,
max_seq_len=2048,
batch_size=8,
meta_template=_meta_template,
run_cfg=dict(num_gpus=1, num_procs=1),
)
eval = dict(
partitioner=dict(
type=SubjectiveNaivePartitioner,
mode='singlescore',
models = [*hf_baichuan2_7b]
),
runner=dict(
type=SlurmSequentialRunner,
partition='llmeval',
quotatype='auto',
max_num_workers=256,
task=dict(
type=SubjectiveEvalTask,
judge_cfg=judge_model
)),
)
work_dir = './creation/'
summarizer = dict(
type=Creationv01Summarizer,
match_method='smart',
)