OpenCompass/opencompass/configs/datasets/SuperGLUE_RTE/SuperGLUE_RTE_ppl_66caf3.py
Songyang Zhang 46cc7894e1
[Feature] Support import configs/models/summarizers from whl (#1376)
* [Feature] Support import configs/models/summarizers from whl

* Update LCBench configs

* Update

* Update

* Update

* Update

* update

* Update

* Update

* Update

* Update

* Update
2024-08-01 00:42:48 +08:00

54 lines
1.5 KiB
Python

from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import HFDataset
RTE_reader_cfg = dict(
input_columns=['hypothesis', 'premise'],
output_column='label',
test_split='train')
RTE_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
'entailment':
dict(round=[
dict(
role='HUMAN',
prompt=
'{premise}\n{hypothesis}\nIs the sentence below entailed by the sentence above?'
),
dict(role='BOT', prompt='Yes'),
]),
'not_entailment':
dict(round=[
dict(
role='HUMAN',
prompt=
'{premise}\n{hypothesis}\nIs the sentence below entailed by the sentence above?'
),
dict(role='BOT', prompt='No'),
])
},
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer),
)
RTE_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
RTE_datasets = [
dict(
type=HFDataset,
abbr='RTE',
path='json',
data_files='./data/SuperGLUE/RTE/val.jsonl',
split='train',
reader_cfg=RTE_reader_cfg,
infer_cfg=RTE_infer_cfg,
eval_cfg=RTE_eval_cfg,
)
]