OpenCompass/opencompass/configs/datasets/GLUE_QQP/GLUE_QQP_ppl_250d00.py
Songyang Zhang 46cc7894e1
[Feature] Support import configs/models/summarizers from whl (#1376)
* [Feature] Support import configs/models/summarizers from whl

* Update LCBench configs

* Update

* Update

* Update

* Update

* update

* Update

* Update

* Update

* Update

* Update
2024-08-01 00:42:48 +08:00

52 lines
1.6 KiB
Python

from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import FixKRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import HFDataset
_hint = 'The following are semantic matching questions. \n' \
'Please determine whether the following two sentences are semantically duplicate: ' \
'0 means not duplicate, 1 means duplicate.\n'
QQP_infer_cfg = dict(
ice_template=dict(
type=PromptTemplate,
template='Sentence one: {question1}\nSentence two: {question2}\nResult: {label}',
),
prompt_template=dict(
type=PromptTemplate,
template={
answer:
f'{_hint}</E>Sentence one: {{question1}}\nSentence two: {{question2}}\nResult: {answer}'
for answer in [0, 1]
},
ice_token='</E>',
),
retriever=dict(type=FixKRetriever, fix_id_list=[0, 1, 2, 3, 4]),
inferencer=dict(type=PPLInferencer))
QQP_eval_cfg = dict(evaluator=dict(type=AccEvaluator), )
QQP_datasets = []
for _split in ['validation', 'test']:
QQP_reader_cfg = dict(
input_columns=['question1', 'question2'],
output_column='label',
train_split='train',
test_split=_split
)
QQP_datasets.append(
dict(
abbr=f'QQP-{_split}',
type=HFDataset,
path='glue',
name='qqp',
reader_cfg=QQP_reader_cfg,
infer_cfg=QQP_infer_cfg,
eval_cfg=QQP_eval_cfg
)
)