mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
39 lines
1.5 KiB
Python
39 lines
1.5 KiB
Python
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
|
from opencompass.openicl.icl_retriever import ZeroRetriever
|
|
from opencompass.openicl.icl_inferencer import GenInferencer
|
|
from opencompass.datasets import LongBenchF1Evaluator, LongBenchnarrativeqaDataset
|
|
|
|
LongBench_narrativeqa_reader_cfg = dict(
|
|
input_columns=['context', 'input'],
|
|
output_column='answers',
|
|
train_split='test',
|
|
test_split='test'
|
|
)
|
|
|
|
LongBench_narrativeqa_infer_cfg = dict(
|
|
prompt_template=dict(
|
|
type=PromptTemplate,
|
|
template=dict(
|
|
round=[
|
|
dict(role='HUMAN', prompt='You are given a story, which can be either a novel or a movie script, and a question. Answer the question as concisely as you can, using a single phrase if possible. Do not provide any explanation.\n\nStory: {context}\n\nNow, answer the question based on the story as concisely as you can, using a single phrase if possible. Do not provide any explanation.\n\nQuestion: {input}\n\nAnswer:'),
|
|
], )),
|
|
retriever=dict(type=ZeroRetriever),
|
|
inferencer=dict(type=GenInferencer, max_out_len=128)
|
|
)
|
|
|
|
LongBench_narrativeqa_eval_cfg = dict(
|
|
evaluator=dict(type=LongBenchF1Evaluator),
|
|
pred_role='BOT'
|
|
)
|
|
|
|
LongBench_narrativeqa_datasets = [
|
|
dict(
|
|
type=LongBenchnarrativeqaDataset,
|
|
abbr='LongBench_narrativeqa',
|
|
path='THUDM/LongBench',
|
|
name='narrativeqa',
|
|
reader_cfg=LongBench_narrativeqa_reader_cfg,
|
|
infer_cfg=LongBench_narrativeqa_infer_cfg,
|
|
eval_cfg=LongBench_narrativeqa_eval_cfg)
|
|
]
|