OpenCompass/configs/datasets/TheoremQA/deprecated_TheoremQA_gen_424e0a.py
2024-05-14 15:35:58 +08:00

40 lines
1.9 KiB
Python

from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import TheoremQADataset, TheoremQA_postprocess
TheoremQA_reader_cfg = dict(input_columns=['Question', 'Answer_type'], output_column='Answer', train_split='test')
TheoremQA_prompt1 = (
'Please read a math problem, and then think step by step to derive the answer. The answer is decided by Answer Type. '
'If the Answer type in [bool], the answer needs to be True or False. '
'Else if the Answer type in [integer, float] , The answer needs to be in numerical form. '
'Else if the Answer type in [list of integer, list of float] , the answer needs to be a list of number like [2, 3, 4]. '
'Else if the Answer type in [option], the answer needs to be an option like (a), (b), (c), (d).'
"You need to output the answer in your final sentence like 'Therefore, the answer is ...'."
)
TheoremQA_prompt2 = (
f'Below is an instruction that describes a task, paired with an input that provides further context. '
f'Write a response that appropriately completes the request.\n\n### Instruction:\n{TheoremQA_prompt1}\n\n### Input:\n{{Question}}\nAnswer_type:{{Answer_type}}\n### Response:\n'
)
TheoremQA_infer_cfg = dict(
prompt_template=dict(type=PromptTemplate, template=TheoremQA_prompt2),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512),
)
TheoremQA_eval_cfg = dict(evaluator=dict(type=AccEvaluator), pred_postprocessor=dict(type=TheoremQA_postprocess))
TheoremQA_datasets = [
dict(
abbr='TheoremQA',
type=TheoremQADataset,
path='./data/TheoremQA/test.csv',
reader_cfg=TheoremQA_reader_cfg,
infer_cfg=TheoremQA_infer_cfg,
eval_cfg=TheoremQA_eval_cfg,
)
]