OpenCompass/configs/datasets/SuperGLUE_CB/SuperGLUE_CB_ppl_0143fe.py
2024-05-14 15:35:58 +08:00

63 lines
1.8 KiB
Python

from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import HFDataset
CB_reader_cfg = dict(
input_columns=['premise', 'hypothesis'],
output_column='label',
)
CB_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
'contradiction':
dict(round=[
dict(
role='HUMAN',
prompt=
'{premise}\n{hypothesis}\nWhat is the relation between the two sentences?'
),
dict(role='BOT', prompt='Contradiction'),
]),
'entailment':
dict(round=[
dict(
role='HUMAN',
prompt=
'{premise}\n{hypothesis}\nWhat is the relation between the two sentences?'
),
dict(role='BOT', prompt='Entailment'),
]),
'neutral':
dict(round=[
dict(
role='HUMAN',
prompt=
'{premise}\n{hypothesis}\nWhat is the relation between the two sentences?'
),
dict(role='BOT', prompt='Neutral'),
]),
},
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer),
)
CB_eval_cfg = dict(evaluator=dict(type=AccEvaluator), )
CB_datasets = [
dict(
type=HFDataset,
abbr='CB',
path='json',
split='train',
data_files='./data/SuperGLUE/CB/val.jsonl',
reader_cfg=CB_reader_cfg,
infer_cfg=CB_infer_cfg,
eval_cfg=CB_eval_cfg,
)
]