OpenCompass/opencompass/datasets/wsc.py
Xingjun.Wang edab1c07ba
[Feature] Support ModelScope datasets (#1289)
* add ceval, gsm8k modelscope surpport

* update race, mmlu, arc, cmmlu, commonsenseqa, humaneval and unittest

* update bbh, flores, obqa, siqa, storycloze, summedits, winogrande, xsum datasets

* format file

* format file

* update dataset format

* support ms_dataset

* udpate dataset for modelscope support

* merge myl_dev and update test_ms_dataset

* udpate dataset for modelscope support

* update readme

* update eval_api_zhipu_v2

* remove unused code

* add get_data_path function

* update readme

* remove tydiqa japanese subset

* add ceval, gsm8k modelscope surpport

* update race, mmlu, arc, cmmlu, commonsenseqa, humaneval and unittest

* update bbh, flores, obqa, siqa, storycloze, summedits, winogrande, xsum datasets

* format file

* format file

* update dataset format

* support ms_dataset

* udpate dataset for modelscope support

* merge myl_dev and update test_ms_dataset

* update readme

* udpate dataset for modelscope support

* update eval_api_zhipu_v2

* remove unused code

* add get_data_path function

* remove tydiqa japanese subset

* update util

* remove .DS_Store

* fix md format

* move util into package

* update docs/get_started.md

* restore eval_api_zhipu_v2.py, add environment setting

* Update dataset

* Update

* Update

* Update

* Update

---------

Co-authored-by: Yun lin <yunlin@U-Q9X2K4QV-1904.local>
Co-authored-by: Yunnglin <mao.looper@qq.com>
Co-authored-by: Yun lin <yunlin@laptop.local>
Co-authored-by: Yunnglin <maoyl@smail.nju.edu.cn>
Co-authored-by: zhangsongyang <zhangsongyang@pjlab.org.cn>
2024-07-29 13:48:32 +08:00

108 lines
3.8 KiB
Python

import json
from datasets import Dataset, load_dataset
from opencompass.registry import LOAD_DATASET
from opencompass.utils import get_data_path
from .base import BaseDataset
@LOAD_DATASET.register_module()
class WSCDataset(BaseDataset):
@staticmethod
def load(**kwargs):
if 'data_files' in kwargs:
kwargs['data_files'] = get_data_path(kwargs['data_files'],
local_mode=True)
dataset = load_dataset(**kwargs)
def preprocess(example):
text_list = example['text'].split(' ')
assert ' ' not in example['target']['span2_text']
# span1 may have 1 or more than 1 words
# span2 is the pronoun and has only 1 word
text_list[example['target']
['span2_index']] = example['target']['span1_text']
example['new_text'] = ' '.join(text_list)
if example['label'] == 'true':
example['answer'] = 1
else:
example['answer'] = 0
example['span1'] = example['target']['span1_text']
example['span2'] = example['target']['span2_text']
del example['target']
return example
dataset = dataset.map(preprocess)
return dataset
@LOAD_DATASET.register_module()
class WSCDatasetV2(BaseDataset):
@staticmethod
def load(path):
path = get_data_path(path, local_mode=True)
data = []
with open(path, 'r') as f:
for line in f:
line = json.loads(line)
item = {
'span1': line['target']['span1_text'],
'span2': line['target']['span2_text'],
'text': line['text'],
'label': {
'true': 'A',
'false': 'B'
}[line['label']],
}
data.append(item)
return Dataset.from_list(data)
@LOAD_DATASET.register_module()
class WSCDatasetV3(BaseDataset):
@staticmethod
def load(path):
path = get_data_path(path, local_mode=True)
data = []
with open(path, 'r') as f:
for line in f:
line = json.loads(line)
text_list = line['text'].split(' ')
span_text1_len = len(line['target']['span1_text'].split(' '))
span_text2_len = len(line['target']['span2_text'].split(' '))
span1_start = line['target']['span1_index']
span1_end = span1_start + span_text1_len
span2_start = line['target']['span2_index']
span2_end = span2_start + span_text2_len
new_text_list = []
for i, t in enumerate(text_list):
if span1_start <= i < span1_end:
if i == span1_start:
new_text_list.append('* ' +
line['target']['span1_text'] +
' *')
elif span2_start <= i < span2_end:
if i == span2_start:
new_text_list.append('# ' +
line['target']['span2_text'] +
' #')
else:
new_text_list.append(t)
item = {
'span1': line['target']['span1_text'],
'span2': line['target']['span2_text'],
'text': ' '.join(new_text_list),
'label': {
'true': 'A',
'false': 'B'
}[line['label']],
}
data.append(item)
return Dataset.from_list(data)