OpenCompass/configs/datasets/subjective_cmp/subjective_corev2.py
bittersweet1999 465308e430
[Feature] Add Subjective Evaluation (#680)
* new version of subject

* fixed draw

* fixed draw

* fixed draw

* done

* done

* done

* done

* fixed lint
2023-12-11 22:22:11 +08:00

63 lines
1.9 KiB
Python

from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import LMEvaluator
from opencompass.datasets import Corev2Dataset
from mmengine.config import read_base
subjective_reader_cfg = dict(
input_columns=['question', 'prefix', 'suffix'],
output_column='judge',
#train_split='test'
)
subjective_all_sets = [
"COREV2_6A_",
]
subjective_datasets = []
for _name in subjective_all_sets:
subjective_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt="{question}"
),
]),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
subjective_eval_cfg = dict(
evaluator=dict(
type=LMEvaluator,
random_order=True,
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role='HUMAN',
prompt = "{prefix}问题: <问题开始> {question} <问题结束>\n\n回答 1: <回答 1 开始> {prediction} <回答 1 结束>\n\n回答 2: <回答 2 开始> {prediction2} <回答 2 结束>\n\n{suffix}"
),
]),
),
),
pred_role="BOT",
)
subjective_datasets.append(
dict(
abbr=f"{_name}",
type=Corev2Dataset,
path="./data/subjective/",
name=_name,
reader_cfg=subjective_reader_cfg,
infer_cfg=subjective_infer_cfg,
eval_cfg=subjective_eval_cfg
))