mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
53 lines
1.8 KiB
Python
53 lines
1.8 KiB
Python
import json
|
|
|
|
from datasets import Dataset
|
|
|
|
from opencompass.openicl.icl_evaluator import BaseEvaluator
|
|
from opencompass.registry import LOAD_DATASET
|
|
|
|
from ..base import BaseDataset
|
|
from .evaluation_main import (InputExample, test_instruction_following_loose,
|
|
test_instruction_following_strict)
|
|
|
|
|
|
@LOAD_DATASET.register_module()
|
|
class IFEvalDataset(BaseDataset):
|
|
|
|
@staticmethod
|
|
def load(path):
|
|
datasets = []
|
|
with open(path, 'r', encoding='utf-8') as file:
|
|
for line in file:
|
|
tmp = json.loads(line.strip())
|
|
dataset = dict(prompt=tmp['prompt'], reference=tmp)
|
|
datasets.append(dataset)
|
|
return Dataset.from_list(datasets)
|
|
|
|
|
|
class IFEvaluator(BaseEvaluator):
|
|
|
|
def score(self, predictions, references):
|
|
results = []
|
|
for pred, refer in zip(predictions, references):
|
|
input = InputExample(
|
|
key=refer['key'],
|
|
instruction_id_list=refer['instruction_id_list'],
|
|
prompt=refer['prompt'],
|
|
kwargs=refer['kwargs'])
|
|
for kwarg in input.kwargs:
|
|
for k in list(kwarg.keys()):
|
|
if kwarg[k] is None:
|
|
kwarg.pop(k, None)
|
|
result = dict(
|
|
strict=test_instruction_following_strict(input, pred),
|
|
loose=test_instruction_following_loose(input, pred),
|
|
)
|
|
results.append(result)
|
|
strict = sum(
|
|
[result['strict'].follow_all_instructions
|
|
for result in results]) / len(results)
|
|
loose = sum(
|
|
[result['loose'].follow_all_instructions
|
|
for result in results]) / len(results)
|
|
return dict(strict_acc=strict * 100, loose_acc=loose * 100)
|