OpenCompass/opencompass/datasets/lawbench/utils/parallel_to_m2.py

222 lines
8.2 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import os
from modules.annotator import Annotator
from modules.tokenizer import Tokenizer
import argparse
from collections import Counter
from tqdm import tqdm
import torch
from collections import defaultdict
from multiprocessing import Pool
from opencc import OpenCC
import timeout_decorator
os.environ["TOKENIZERS_PARALLELISM"] = "false"
annotator, sentence_to_tokenized = None, None
cc = OpenCC("t2s")
@timeout_decorator.timeout(10)
def annotate_with_time_out(line):
"""
:param line:
:return:
"""
sent_list = line.split("\t")[1:]
source = sent_list[0]
if args.segmented:
source = source.strip()
else:
source = "".join(source.strip().split())
output_str = ""
for idx, target in enumerate(sent_list[1:]):
try:
if args.segmented:
target = target.strip()
else:
target = "".join(target.strip().split())
if not args.no_simplified:
target = cc.convert(target)
source_tokenized, target_tokenized = sentence_to_tokenized[source], sentence_to_tokenized[target]
out, cors = annotator(source_tokenized, target_tokenized, idx)
if idx == 0:
output_str += "".join(out[:-1])
else:
output_str += "".join(out[1:-1])
except Exception:
raise Exception
return output_str
def annotate(line):
"""
:param line:
:return:
"""
sent_list = line.split("\t")[1:]
source = sent_list[0]
if args.segmented:
source = source.strip()
else:
source = "".join(source.strip().split())
output_str = ""
for idx, target in enumerate(sent_list[1:]):
try:
if args.segmented:
target = target.strip()
else:
target = "".join(target.strip().split())
if not args.no_simplified:
target = cc.convert(target)
source_tokenized, target_tokenized = sentence_to_tokenized[source], sentence_to_tokenized[target]
out, cors = annotator(source_tokenized, target_tokenized, idx)
if idx == 0:
output_str += "".join(out[:-1])
else:
output_str += "".join(out[1:-1])
except Exception:
raise Exception
return output_str
def firsttime_process(args):
tokenizer = Tokenizer(args.granularity, args.device, args.segmented, args.bpe)
global annotator, sentence_to_tokenized
annotator = Annotator.create_default(args.granularity, args.multi_cheapest_strategy)
lines = open(args.file, "r", encoding="utf-8").read().strip().split("\n") # format: id src tgt1 tgt2...
# error_types = []
with open(args.output, "w", encoding="utf-8") as f:
count = 0
sentence_set = set()
sentence_to_tokenized = {}
for line in lines:
sent_list = line.split("\t")[1:]
for idx, sent in enumerate(sent_list):
if args.segmented:
# print(sent)
sent = sent.strip()
else:
sent = "".join(sent.split()).strip()
if idx >= 1:
if not args.no_simplified:
sentence_set.add(cc.convert(sent))
else:
sentence_set.add(sent)
else:
sentence_set.add(sent)
batch = []
for sent in tqdm(sentence_set):
count += 1
if sent:
batch.append(sent)
if count % args.batch_size == 0:
results = tokenizer(batch)
for s, r in zip(batch, results):
sentence_to_tokenized[s] = r # Get tokenization map.
batch = []
if batch:
results = tokenizer(batch)
for s, r in zip(batch, results):
sentence_to_tokenized[s] = r # Get tokenization map.
timeout_indices = []
# 单进程模式
for idx, line in enumerate(tqdm(lines)):
try:
ret = annotate_with_time_out(line)
except Exception:
timeout_indices.append(idx)
return timeout_indices
def main(args):
timeout_indices = firsttime_process(args)
tokenizer = Tokenizer(args.granularity, args.device, args.segmented, args.bpe)
global annotator, sentence_to_tokenized
annotator = Annotator.create_default(args.granularity, args.multi_cheapest_strategy)
lines = open(args.file, "r", encoding="utf-8").read().strip().split("\n")
new_lines = []# format: id src tgt1 tgt2...
with open(args.output, "w", encoding="utf-8") as f:
count = 0
sentence_set = set()
sentence_to_tokenized = {}
for line_idx, line in enumerate(lines):
if line_idx in timeout_indices:
# print(f"line before split: {line}")
line_split = line.split("\t")
line_number, sent_list = line_split[0], line_split[1:]
assert len(sent_list) == 2
sent_list[-1] = ""
line = line_number + "\t" + "\t".join(sent_list)
# print(f"line time out: {line}")
new_lines.append(line)
else:
new_lines.append(line)
sent_list = line.split("\t")[1:]
for idx, sent in enumerate(sent_list):
if args.segmented:
# print(sent)
sent = sent.strip()
else:
sent = "".join(sent.split()).strip()
if idx >= 1:
if not args.no_simplified:
sentence_set.add(cc.convert(sent))
else:
sentence_set.add(sent)
else:
sentence_set.add(sent)
batch = []
for sent in tqdm(sentence_set):
count += 1
if sent:
batch.append(sent)
if count % args.batch_size == 0:
results = tokenizer(batch)
for s, r in zip(batch, results):
sentence_to_tokenized[s] = r # Get tokenization map.
batch = []
if batch:
results = tokenizer(batch)
for s, r in zip(batch, results):
sentence_to_tokenized[s] = r # Get tokenization map.
# 单进程模式
lines = new_lines
for idx, line in enumerate(tqdm(lines)):
ret = annotate(line)
f.write(ret)
f.write("\n")
# 多进程模式仅在Linux环境下测试建议在linux服务器上使用
# with Pool(args.worker_num) as pool:
# for ret in pool.imap(annotate, tqdm(lines), chunksize=8):
# if ret:
# f.write(ret)
# f.write("\n")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Choose input file to annotate")
parser.add_argument("-f", "--file", type=str, required=True, help="Input parallel file")
parser.add_argument("-o", "--output", type=str, help="Output file", required=True)
parser.add_argument("-b", "--batch_size", type=int, help="The size of batch", default=128)
parser.add_argument("-d", "--device", type=int, help="The ID of GPU", default=0)
parser.add_argument("-w", "--worker_num", type=int, help="The number of workers", default=16)
parser.add_argument("-g", "--granularity", type=str, help="Choose char-level or word-level evaluation", default="char")
parser.add_argument("-m", "--merge", help="Whether merge continuous replacement/deletion/insertion", action="store_true")
parser.add_argument("-s", "--multi_cheapest_strategy", type=str, choices=["first", "all"], default="all")
parser.add_argument("--segmented", help="Whether tokens have been segmented", action="store_true") # 支持提前token化用空格隔开
parser.add_argument("--no_simplified", help="Whether simplifying chinese", action="store_true") # 将所有corrections转换为简体中文
parser.add_argument("--bpe", help="Whether to use bpe", action="store_true") # 支持 bpe 切分英文单词
args = parser.parse_args()
main(args)