mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00

* [Feat] Add public dataset support of VisualGLM. * [Feat] Refactor LLaVA. * [Feat] Add public dataset support of LlaVA. * [Fix] Add arg.
42 lines
1.4 KiB
Python
42 lines
1.4 KiB
Python
from opencompass.multimodal.models.visualglm import (VisualGLMBasePostProcessor, VisualGLMMMBenchPromptConstructor)
|
|
|
|
# dataloader settings
|
|
val_pipeline = [
|
|
dict(type='mmpretrain.torchvision/Resize',
|
|
size=(224, 224),
|
|
interpolation=3),
|
|
dict(type='mmpretrain.torchvision/ToTensor'),
|
|
dict(type='mmpretrain.torchvision/Normalize',
|
|
mean=(0.48145466, 0.4578275, 0.40821073),
|
|
std=(0.26862954, 0.26130258, 0.27577711)),
|
|
dict(type='mmpretrain.PackInputs',
|
|
algorithm_keys=[
|
|
'question', 'options', 'category', 'l2-category', 'context',
|
|
'index', 'options_dict'
|
|
])
|
|
]
|
|
|
|
dataset = dict(type='opencompass.MMBenchDataset',
|
|
data_file='data/mmbench/mmbench_test_20230712.tsv',
|
|
pipeline=val_pipeline)
|
|
|
|
mmbench_dataloader = dict(batch_size=1,
|
|
num_workers=4,
|
|
dataset=dataset,
|
|
collate_fn=dict(type='pseudo_collate'),
|
|
sampler=dict(type='DefaultSampler', shuffle=False))
|
|
|
|
# model settings
|
|
visualglm_model = dict(
|
|
type='visualglm',
|
|
pretrained_path='/path/to/visualglm', # or Huggingface repo id
|
|
prompt_constructor=dict(type=VisualGLMMMBenchPromptConstructor),
|
|
post_processor=dict(type=VisualGLMBasePostProcessor)
|
|
)
|
|
|
|
# evaluation settings
|
|
mmbench_evaluator = [
|
|
dict(type='opencompass.DumpResults',
|
|
save_path='work_dirs/visualglm-6b-mmbench.xlsx')
|
|
]
|