mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
44 lines
1.7 KiB
Python
44 lines
1.7 KiB
Python
from opencompass.openicl.icl_prompt_template import PromptTemplate
|
|
from opencompass.openicl.icl_retriever import ZeroRetriever
|
|
from opencompass.openicl.icl_inferencer import GenInferencer
|
|
from opencompass.openicl.icl_evaluator import EMEvaluator, RougeEvaluator, SquadEvaluator
|
|
from opencompass.datasets.leval import LEvalGPTEvaluator, LEvalPaperAssistantDataset
|
|
|
|
LEval_ps_summ_reader_cfg = dict(
|
|
input_columns=['context', 'question', 'length'],
|
|
output_column='answer',
|
|
train_split='test',
|
|
test_split='test'
|
|
)
|
|
|
|
LEval_ps_summ_infer_cfg = dict(
|
|
prompt_template=dict(
|
|
type=PromptTemplate,
|
|
template=dict(
|
|
begin=[
|
|
dict(role='SYSTEM', fallback_role='HUMAN', prompt='Now you are given a very long document. Please follow the instruction after this document. These instructions may include summarizing a document, answering questions based on the document, or writing a required paragraph.'),
|
|
],
|
|
round=[
|
|
dict(role='HUMAN', prompt='Document is as follows. {context}\nInstruction: {question}\nAnswer this question with {length} words.'),
|
|
dict(role='BOT', prompt=''),
|
|
], )),
|
|
retriever=dict(type=ZeroRetriever),
|
|
inferencer=dict(type=GenInferencer, max_out_len=512)
|
|
)
|
|
|
|
LEval_ps_summ_eval_cfg = dict(
|
|
evaluator=dict(type=LEvalGPTEvaluator),
|
|
pred_role='BOT'
|
|
)
|
|
|
|
LEval_ps_summ_datasets = [
|
|
dict(
|
|
type=LEvalPaperAssistantDataset,
|
|
abbr='LEval_paper_assistant',
|
|
path='L4NLP/LEval',
|
|
name='paper_assistant',
|
|
reader_cfg=LEval_ps_summ_reader_cfg,
|
|
infer_cfg=LEval_ps_summ_infer_cfg,
|
|
eval_cfg=LEval_ps_summ_eval_cfg)
|
|
]
|