OpenCompass/configs/datasets/leval/levalcoursera/leval_coursera_gen_36a006.py
2023-08-25 11:46:23 +08:00

46 lines
1.8 KiB
Python

from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import EMEvaluator, RougeEvaluator, SquadEvaluator, AccEvaluator
from opencompass.datasets.leval import LEvalCourseraDataset
from opencompass.utils.text_postprocessors import first_capital_postprocess, first_capital_postprocess_multi
LEval_coursera_reader_cfg = dict(
input_columns=['context', 'question'],
output_column='answer',
train_split='test',
test_split='test'
)
LEval_coursera_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(role='SYSTEM', fallback_role='HUMAN', prompt='Now you are given a very long document. Please follow the instruction based on this document. For multi-choice questions, there could be a single correct option or multiple correct options. Please only provide the letter corresponding to the answer (like A or AB) when answering.'),
],
round=[
dict(role='HUMAN', prompt='Document is as follows.\n{context}\nQuestion:{question}\nAnswer:'),
dict(role='BOT', prompt=''),
], )),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=10)
)
LEval_coursera_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_postprocessor=dict(type=first_capital_postprocess_multi),
pred_role='BOT'
)
LEval_coursera_datasets = [
dict(
type=LEvalCourseraDataset,
abbr='LEval_coursera',
path='L4NLP/LEval',
name='coursera',
reader_cfg=LEval_coursera_reader_cfg,
infer_cfg=LEval_coursera_infer_cfg,
eval_cfg=LEval_coursera_eval_cfg)
]