mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00

* support turbomind * update doc * Update docs/en/advanced_guides/evaluation_turbomind.md Co-authored-by: Tong Gao <gaotongxiao@gmail.com> * Update docs/zh_cn/advanced_guides/evaluation_turbomind.md Co-authored-by: Tong Gao <gaotongxiao@gmail.com> * Update docs/zh_cn/advanced_guides/evaluation_turbomind.md Co-authored-by: Tong Gao <gaotongxiao@gmail.com> * Update docs/en/advanced_guides/evaluation_turbomind.md Co-authored-by: Tong Gao <gaotongxiao@gmail.com> * update --------- Co-authored-by: Tong Gao <gaotongxiao@gmail.com>
162 lines
5.8 KiB
Python
162 lines
5.8 KiB
Python
import os.path as osp
|
|
import random
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
from typing import Dict, List, Optional, Union
|
|
|
|
from opencompass.models.base import BaseModel
|
|
from opencompass.models.base_api import TokenBucket
|
|
from opencompass.utils.logging import get_logger
|
|
from opencompass.utils.prompt import PromptList
|
|
|
|
PromptType = Union[PromptList, str]
|
|
|
|
|
|
def valid_str(string, coding='utf-8'):
|
|
"""decode text according to its encoding type."""
|
|
invalid_chars = [b'\xef\xbf\xbd']
|
|
bstr = bytes(string, coding)
|
|
for invalid_char in invalid_chars:
|
|
bstr = bstr.replace(invalid_char, b'')
|
|
ret = bstr.decode(encoding=coding, errors='ignore')
|
|
return ret
|
|
|
|
|
|
class TurboMindModel(BaseModel):
|
|
"""Model wrapper for TurboMind API.
|
|
|
|
Args:
|
|
path (str): The name of OpenAI's model.
|
|
model_path (str): folder of the turbomind model's path
|
|
max_seq_len (int): The maximum allowed sequence length of a model.
|
|
Note that the length of prompt + generated tokens shall not exceed
|
|
this value. Defaults to 2048.
|
|
query_per_second (int): The maximum queries allowed per second
|
|
between two consecutive calls of the API. Defaults to 1.
|
|
retry (int): Number of retires if the API call fails. Defaults to 2.
|
|
meta_template (Dict, optional): The model's meta prompt
|
|
template if needed, in case the requirement of injecting or
|
|
wrapping of any meta instructions.
|
|
"""
|
|
|
|
is_api: bool = True
|
|
|
|
def __init__(
|
|
self,
|
|
path: str,
|
|
model_path: str,
|
|
max_seq_len: int = 2048,
|
|
query_per_second: int = 1,
|
|
retry: int = 2,
|
|
meta_template: Optional[Dict] = None,
|
|
):
|
|
|
|
super().__init__(path=path,
|
|
max_seq_len=max_seq_len,
|
|
meta_template=meta_template)
|
|
self.logger = get_logger()
|
|
|
|
from lmdeploy import turbomind as tm
|
|
from lmdeploy.model import MODELS as LMMODELS
|
|
from lmdeploy.turbomind.tokenizer import Tokenizer as LMTokenizer
|
|
|
|
self.retry = retry
|
|
|
|
tokenizer_model_path = osp.join(model_path, 'triton_models',
|
|
'tokenizer')
|
|
self.tokenizer = LMTokenizer(tokenizer_model_path)
|
|
tm_model = tm.TurboMind(model_path, eos_id=self.tokenizer.eos_token_id)
|
|
self.model_name = tm_model.model_name
|
|
self.model = LMMODELS.get(self.model_name)()
|
|
self.generator = tm_model.create_instance()
|
|
self.token_bucket = TokenBucket(query_per_second)
|
|
|
|
def generate(
|
|
self,
|
|
inputs: List[str or PromptList],
|
|
max_out_len: int = 512,
|
|
temperature: float = 0.0,
|
|
) -> List[str]:
|
|
"""Generate results given a list of inputs.
|
|
|
|
Args:
|
|
inputs (List[str or PromptList]): A list of strings or PromptDicts.
|
|
The PromptDict should be organized in OpenCompass'
|
|
API format.
|
|
max_out_len (int): The maximum length of the output.
|
|
temperature (float): What sampling temperature to use,
|
|
between 0 and 2. Higher values like 0.8 will make the output
|
|
more random, while lower values like 0.2 will make it more
|
|
focused and deterministic. Defaults to 0.7.
|
|
|
|
Returns:
|
|
List[str]: A list of generated strings.
|
|
"""
|
|
prompts = inputs
|
|
with ThreadPoolExecutor() as executor:
|
|
results = list(
|
|
executor.map(self._generate, prompts,
|
|
[max_out_len] * len(inputs),
|
|
[temperature] * len(inputs)))
|
|
return results
|
|
|
|
def wait(self):
|
|
"""Wait till the next query can be sent.
|
|
|
|
Applicable in both single-thread and multi-thread environments.
|
|
"""
|
|
return self.token_bucket.get_token()
|
|
|
|
def _generate(self, input: str or PromptList, max_out_len: int,
|
|
temperature: float) -> str:
|
|
"""Generate results given a list of inputs.
|
|
|
|
Args:
|
|
inputs (str or PromptList): A string or PromptDict.
|
|
The PromptDict should be organized in OpenCompass'
|
|
API format.
|
|
max_out_len (int): The maximum length of the output.
|
|
temperature (float): What sampling temperature to use,
|
|
between 0 and 2. Higher values like 0.8 will make the output
|
|
more random, while lower values like 0.2 will make it more
|
|
focused and deterministic.
|
|
|
|
Returns:
|
|
str: The generated string.
|
|
"""
|
|
assert isinstance(input, (str, PromptList))
|
|
|
|
assert type(
|
|
input
|
|
) is str, 'We only support string for TurboMind Python API now'
|
|
|
|
intput_token_ids = self.tokenizer.encode(input)
|
|
|
|
for _ in range(self.retry):
|
|
self.wait()
|
|
session_id = random.randint(1, 100000)
|
|
nth_round = 0
|
|
for outputs in self.generator.stream_infer(
|
|
session_id=session_id,
|
|
input_ids=[intput_token_ids],
|
|
stream_output=False,
|
|
request_output_len=max_out_len,
|
|
sequence_start=(nth_round == 0),
|
|
sequence_end=False,
|
|
step=0,
|
|
stop=False,
|
|
top_k=40,
|
|
top_p=0.8,
|
|
temperature=temperature,
|
|
repetition_penalty=1.0,
|
|
ignore_eos=False,
|
|
random_seed=random.getrandbits(64)
|
|
if nth_round == 0 else None):
|
|
pass
|
|
|
|
output_token_ids, _ = outputs[0]
|
|
# decode output_token_ids
|
|
response = self.tokenizer.decode(output_token_ids)
|
|
response = valid_str(response)
|
|
|
|
return response
|