OpenCompass/opencompass/datasets/cibench.py
2023-12-25 21:59:16 +08:00

377 lines
15 KiB
Python

import json
import os
import os.path as osp
import re
import subprocess
from collections import defaultdict
from typing import List, Optional
import numpy as np
from datasets import Dataset
from opencompass.openicl.icl_evaluator import BaseEvaluator
from opencompass.registry import ICL_EVALUATORS, LOAD_DATASET
from .base import BaseDataset
def load_experiment(file: str) -> dict:
"""Load single experiment file with solutions."""
with open(file, 'r') as f:
notebook = json.load(f)
example = notebook['cells']
metadata = notebook['metadata']
modules = metadata.get('modules', [])
if modules:
# these two annotations should be the same
assert len(modules) == len(metadata.get('step_types'))
# reformat annotations
modules = [[_m.strip() for _m in _modules.split('&')]
for _modules in modules]
questions = []
source_codes = []
outputs = []
tags = []
for cell in example:
if cell['cell_type'] == 'markdown':
text = ''.join(cell['source']).strip()
if modules:
_modules = modules.pop(0)
text += f"Please use {' and '.join(_modules)} modules."
text = text.strip() + '\n'
# append the formatted text
questions.append(text)
elif cell['cell_type'] == 'code':
source_codes.append(''.join(cell['source']))
if cell['outputs'] and 'data' in cell['outputs'][-1]:
if 'image/png' in cell['outputs'][-1]['data']:
# skip vis temporarily due to lack of evaluation
tags.append('vis')
outputs.append(
cell['outputs'][-1]['data']['image/png'])
elif 'text/plain' in cell['outputs'][-1]['data']:
tags.append('general')
outputs.append(''.join(
cell['outputs'][-1]['data']['text/plain']))
else:
tags.append('exec')
outputs.append(None)
return dict(
experiment=file,
questions=sum(([
dict(role='user', content=question),
dict(role='assistant', content=source_code)
] for question, source_code in zip(questions, source_codes)), []),
references=dict(outputs=outputs,
tags=tags,
metadata=metadata,
experiment=file),
)
@LOAD_DATASET.register_module()
class CIBenchDataset(BaseDataset):
"""Code Interpreter dataset."""
@staticmethod
def load(path: str):
"""Load whole dataset."""
assert os.path.exists(path), f'Path {path} does not exist.'
data_list = []
for cwd, dirs, files in os.walk(path):
dirs.sort()
files.sort()
for f in files:
if '.ipynb' in f:
try:
data = load_experiment(os.path.join(cwd, f))
except Exception:
print(f'Error with file {os.path.join(cwd, f)}')
continue
data_list.append(data)
dataset = Dataset.from_list(data_list)
return dataset
class CIBenchEvaluator(BaseEvaluator):
"""Evaluator for CI dataset.
Args:
text_evaluator (optional, dict): The text evaluator for text result
comparison[]. Defaults to None, which use Rouge as defaults.
Please notice that a extra key for `metric_name` should be set
to get the exact metric result, such as `rouge1`.
output_dir (optional, str): The directory to save experiment
files in a markdown or notebook format.
with_ipynb (bool): Generate ipynb correspondingly.
Defaults to False.
user_data_dir (str): The directory to load local files.
Defaults to 'ENV', which means use environment variable
`USER_DATA_DIR` to get the data dir.
"""
def __init__(self,
text_evaluator: Optional[dict] = None,
output_dir: Optional[str] = None,
with_ipynb: bool = False,
user_data_dir: str = 'ENV') -> None:
if text_evaluator is None:
from opencompass.openicl.icl_evaluator import RougeEvaluator
self.text_evaluator = ICL_EVALUATORS.build(
dict(type=RougeEvaluator))
self.text_eval_metric = 'rouge1'
else:
self.text_eval_metric = text_evaluator.pop('metric_name')
self.text_evaluator = ICL_EVALUATORS.build(text_evaluator)
# TODO: should use work dir for this task.
self.output_dir = output_dir
self.user_data_dir = self.check_user_data_dir(user_data_dir)
self.with_ipynb = with_ipynb
self.TAG_MAPPING = {
'exec': ('executable', self.valid_step),
'general': ('general_correct', self.correct_step),
'num': ('numeric_correct', self.correct_step),
'text': ('text_score', self.text_step),
'vis': ('vis_sim', self.vis_similarity_step),
}
def check_user_data_dir(self, user_data_dir):
if user_data_dir == 'ENV':
user_data_dir = os.environ.get('USER_DATA_DIR', '')
user_data_dir = user_data_dir.rstrip('/')
basename = osp.basename(user_data_dir)
if basename and basename != 'data':
user_data_dir = osp.join(user_data_dir, 'data')
assert osp.exists(user_data_dir), \
f'a subfolder named `data` should exist under {user_data_dir}.'
elif basename:
assert osp.exists(user_data_dir), \
f'{user_data_dir} does not exist.'
return user_data_dir
@staticmethod
def valid_step(step):
"""Whether the step is executable and valid."""
# Found the latest code interpreter to determine valid
for action in step[::-1]:
if action['type'] == 'IPythonInterpreter':
if action['errmsg']:
return False
else:
return True
# No code interpreter for this step, reckon as False
return False
@staticmethod
def correct_step(step, target):
"""Whether the step output is correct."""
# Found the latest code interpreter to determine correct
for action in step[::-1]:
if action['type'] == 'IPythonInterpreter':
if action['result']:
try:
pred = action['result']['text']
match = re.search('```\n(.*?)\n```', pred, re.DOTALL)
if match:
out = match.group(1)
return out == target or out in target
except Exception:
return False
# Fall back to False
return False
def text_step(self, step, target):
"""Whether the step output is correct."""
# Found the latest code interpreter to determine correct
for action in step[::-1]:
if action['type'] == 'IPythonInterpreter':
if action['result']:
try:
pred = action['result']['text']
match = re.search('```\n(.*?)\n```', pred, re.DOTALL)
if match:
out = match.group(1)
score = self.text_evaluator.score([out], [target])
return score[self.text_eval_metric] / 100
except Exception:
return False
# Fall back to False
return False
@staticmethod
def vis_similarity_step(step, target):
"""Whether the step output image has the same structure similarity with
the given images."""
# Found the latest code interpreter to determine correct
import base64
import skimage
for action in step[::-1]:
if action['type'] == 'IPythonInterpreter':
if action['result']:
try:
pred = action['result']['text']
match = re.search(r'!\[fig-[0-9]*\]\((.*?)\)', pred,
re.DOTALL)
if match:
img_pred = match.group(1)
img2 = base64.b64decode(target)
img2 = skimage.io.imread(img2, plugin='imageio')
img1 = skimage.io.imread(img_pred, plugin='imageio')
img1 = skimage.transform.resize(img1, img2.shape[:2])
img1 = 255 * img1
# Convert to integer data type pixels.
img1 = img1.astype(np.uint8)
ssim = skimage.metrics.structural_similarity(
img1, img2, channel_axis=-1)
# mse = skimage.metrics.mean_squared_error(img1, img2)
# ssim greater better
# mse smaller better but has no upper bound
return ssim
except Exception:
return 0
# Fall back to 0
return 0
def save_results(self, origin_prompt, steps):
"""Save the prediction result in a markdown and notebook format."""
def check_jupytext():
"""Check requirements existence."""
from shutil import which
assert which('jupytext'), (
"Please install jupytext use 'pip install jupytext' to ensure"
'the conversion processes.')
check_jupytext()
p_list = []
from opencompass.lagent.actions.ipython_interpreter import extract_code
for idx, (example_origin_prompt,
example_steps) in enumerate(zip(origin_prompt, steps)):
markdown_lines = []
for prompt, step in zip(example_origin_prompt, example_steps):
for action in step[::-1]:
if action['type'] == 'IPythonInterpreter':
valid_action = action
break
# fall back to final action
valid_action = step[-1]
markdown_lines.append(prompt)
markdown_lines.append('\n')
code_text = valid_action['args']['text']
code_text = extract_code(code_text)
code_text = '```python\n' + code_text + '\n```'
markdown_lines.append(code_text)
markdown_lines.append('\n')
md_file = f'experiment{idx}.md'
with open(md_file, 'w') as f:
f.writelines(markdown_lines)
# TODO: be careful for this
# The result might be different with infer process
# please check carefully
# convert markdown to ipynb and exectue with error tolerance
if self.with_ipynb:
p = subprocess.Popen(
'jupytext --to ipynb --pipe-fmt ipynb '
"--pipe 'jupyter nbconvert --to ipynb --execute "
f"--allow-errors --stdin --stdout' {md_file}",
shell=True)
p_list.append(p)
# TODO: async wait
for p in p_list:
p.wait()
def set_data_dir(self, work_dir):
"""Set work directory and link data files for save notebook results."""
if self.user_data_dir:
basename = osp.basename(self.user_data_dir)
if not osp.exists(osp.join(self.output_dir, basename)):
os.symlink(self.user_data_dir,
osp.join(self.output_dir, basename))
os.chdir(work_dir)
def unset_data_dir(self, work_dir):
"""Change work directory and keep the symlink."""
os.chdir(work_dir)
def single_exp(self, gold, steps):
tags = gold['tags']
outputs = gold['outputs']
metadata = gold['metadata']
hard_tags = metadata.get('step_types', [])
if hard_tags:
tags = hard_tags
# executable: exec succeed
# general_correct: general correct
# numeric_correct: numerical correct
# text_score: text score
# vis_sim: visual similarity
result = defaultdict(list)
for tag, step, output in zip(tags, steps, outputs):
# check whether this step is valid
result['executable'].append(self.valid_step(step))
if tag != 'exec':
key, func = self.TAG_MAPPING[tag]
result[key].append(func(step, output))
# add missing metric for better analyse if not exists
if hard_tags:
check_tags = ['exec', 'num', 'text', 'vis']
else:
check_tags = ['exec', 'general', 'vis']
for tag in check_tags:
key = self.TAG_MAPPING[tag][0]
if key not in result:
result[key] = []
return result
def get_output_dir(self):
"""Get output dir from eval task.
Notice: output dir should be in format xxx/data.
All the needed files should be
"""
# hard hack for get output dir from eval task
if hasattr(self, '_out_dir') and self.output_dir is None:
self.output_dir = self._out_dir
def score(self, predictions: List, references: List, steps: List,
origin_prompt: List):
"""Calculate accuracy."""
if len(steps) != len(references):
return {'error': 'steps and refrs have different length'}
cwd = os.getcwd()
self.get_output_dir()
if self.output_dir:
if not osp.exists(self.output_dir):
os.makedirs(self.output_dir)
self.set_data_dir(self.output_dir)
self.save_results(origin_prompt, steps)
self.unset_data_dir(cwd)
total_results = defaultdict(float)
total_scores = defaultdict(float)
total_nums = defaultdict(int)
for gold, single_steps in zip(references, steps):
result = self.single_exp(gold, single_steps)
for k, v in result.items():
total_scores[k] += sum(v)
total_nums[k] += len(v)
for k, v in total_scores.items():
if total_nums[k] > 0:
total_results[k] = total_scores[k] / total_nums[k] * 100
else:
total_results[k] = -1
return total_results