mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00
272 lines
9.6 KiB
Python
272 lines
9.6 KiB
Python
from PIL import Image
|
|
import base64
|
|
import math
|
|
import ast
|
|
|
|
import torch
|
|
from transformers import StoppingCriteria
|
|
import os
|
|
import io
|
|
|
|
if 'VIDEO_RESIZE' in os.environ:
|
|
# highresxpatch
|
|
VIDEO_RESIZE = os.environ['VIDEO_RESIZE']
|
|
video_base, video_ps = VIDEO_RESIZE.split('x')
|
|
video_base = int(video_base)
|
|
video_ps = int(video_ps)
|
|
print(f"VIDEO_RESIZE is set as {VIDEO_RESIZE}, {video_base}, {video_ps}")
|
|
else:
|
|
HIGHRES_BASE = None
|
|
|
|
if 'HIGHRES_BASE' in os.environ:
|
|
# highresxpatch
|
|
HIGHRES_BASE = os.environ['HIGHRES_BASE']
|
|
highres_base, highres_ps = HIGHRES_BASE.split('x')
|
|
highres_base = int(highres_base)
|
|
highres_ps = int(highres_ps)
|
|
print(f"HIGHRES_BASE is set as {HIGHRES_BASE}, {highres_base}, {highres_ps}")
|
|
else:
|
|
HIGHRES_BASE = None
|
|
|
|
if 'MAXRES' in os.environ:
|
|
# highresxpatch
|
|
MAXRES = int(os.environ['MAXRES'])
|
|
print(f"MAXRES is set as {MAXRES}")
|
|
else:
|
|
MAXRES = 1536
|
|
|
|
if 'MINRES' in os.environ:
|
|
# highresxpatch
|
|
MINRES = int(os.environ['MINRES'])
|
|
print(f"MINRES is set as {MINRES}")
|
|
else:
|
|
MINRES = 0
|
|
|
|
if 'VIDEO_MAXRES' in os.environ:
|
|
# highresxpatch
|
|
VIDEO_MAXRES = int(os.environ['VIDEO_MAXRES'])
|
|
print(f"VIDEO_MAXRES is set as {VIDEO_MAXRES}")
|
|
else:
|
|
VIDEO_MAXRES = 1536
|
|
|
|
if 'VIDEO_MINRES' in os.environ:
|
|
# highresxpatch
|
|
VIDEO_MINRES = int(os.environ['VIDEO_MINRES'])
|
|
print(f"VIDEO_MINRES is set as {VIDEO_MINRES}")
|
|
else:
|
|
MINRES = 0
|
|
|
|
if 'PAD2STRIDE' in os.environ:
|
|
# highresxpatch
|
|
PAD2STRIDE = True
|
|
print(f"PAD2STRIDE is set")
|
|
else:
|
|
PAD2STRIDE = False
|
|
|
|
if 'LOWRES_RESIZE' in os.environ:
|
|
LOWRES_RESIZE = os.environ['LOWRES_RESIZE']
|
|
print(f"LOWRES_RESIZE is set as {LOWRES_RESIZE}")
|
|
if 'x' in LOWRES_RESIZE:
|
|
size, ps = LOWRES_RESIZE.split('x')
|
|
size = int(size)
|
|
ps = int(ps)
|
|
LOWRES_RESIZE = (size, ps)
|
|
else:
|
|
LOWRES_RESIZE = int(LOWRES_RESIZE)
|
|
else:
|
|
LOWRES_RESIZE = None
|
|
|
|
|
|
def pad_image(image, target_resolution, value=0):
|
|
"""
|
|
Resize and pad an image to a target resolution while maintaining aspect ratio.
|
|
|
|
Args:
|
|
image (PIL.Image.Image): The input image.
|
|
target_resolution (tuple): The target resolution (width, height) of the image.
|
|
|
|
Returns:
|
|
PIL.Image.Image: The resized and padded image.
|
|
"""
|
|
original_width, original_height = image.size
|
|
target_width, target_height = target_resolution
|
|
# Create a new image with the target size and paste the resized image onto it
|
|
new_image = Image.new('RGB', (target_width, target_height), (value, value, value))
|
|
paste_x = (target_width - original_width) // 2
|
|
paste_y = (target_height - original_height) // 2
|
|
new_image.paste(image, (paste_x, paste_y))
|
|
return new_image
|
|
|
|
def resize_images(image, patch_size=14, base_size=896):
|
|
h, w = image.size
|
|
if base_size == 0:
|
|
if h * w > MAXRES * MAXRES:
|
|
# print(f'{h}x{w} larger than max size {MAXRES}, resize to {MAXRES}')
|
|
scale = MAXRES * MAXRES / (h * w)
|
|
scale = math.sqrt(scale)
|
|
elif h * w < MINRES * MINRES:
|
|
# print(f'{h}x{w} smaller than max size {MINRES}, resize to {MINRES}')
|
|
scale = MINRES * MINRES / (h * w)
|
|
scale = math.sqrt(scale)
|
|
else:
|
|
scale = None
|
|
else:
|
|
scale = base_size * base_size / (h * w)
|
|
scale = math.sqrt(scale)
|
|
|
|
|
|
if scale is not None:
|
|
new_h = int(h * scale / patch_size) * patch_size
|
|
new_w = int(w * scale / patch_size) * patch_size
|
|
new_h = max(new_h, patch_size)
|
|
new_w = max(new_w, patch_size)
|
|
image = image.resize((new_h, new_w))
|
|
elif PAD2STRIDE:
|
|
if h % patch_size == 0:
|
|
new_h = h
|
|
else:
|
|
new_h = (h // patch_size + 1) * patch_size
|
|
|
|
if w % patch_size == 0:
|
|
new_w = w
|
|
else:
|
|
new_w = (w // patch_size + 1) * patch_size
|
|
image = pad_image(image, (new_h, new_w), value=127)
|
|
else:
|
|
scale = 1.0
|
|
new_h = int(h * scale / patch_size) * patch_size
|
|
new_w = int(w * scale / patch_size) * patch_size
|
|
new_h = max(new_h, patch_size)
|
|
new_w = max(new_w, patch_size)
|
|
image = image.resize((new_h, new_w))
|
|
|
|
return image
|
|
|
|
def resize_video(image, patch_size=14, base_size=896):
|
|
h, w = image.size
|
|
if base_size == 0:
|
|
if h * w > VIDEO_MAXRES * VIDEO_MAXRES:
|
|
# print(f'{h}x{w} larger than max size {MAXRES}, resize to {MAXRES}')
|
|
scale = VIDEO_MAXRES * VIDEO_MAXRES / (h * w)
|
|
scale = math.sqrt(scale)
|
|
elif h * w < VIDEO_MINRES * VIDEO_MINRES:
|
|
# print(f'{h}x{w} smaller than max size {MINRES}, resize to {MINRES}')
|
|
scale = VIDEO_MINRES * VIDEO_MINRES / (h * w)
|
|
scale = math.sqrt(scale)
|
|
else:
|
|
scale = None
|
|
else:
|
|
scale = base_size * base_size / (h * w)
|
|
scale = math.sqrt(scale)
|
|
|
|
if scale is not None:
|
|
new_h = int(h * scale / patch_size) * patch_size
|
|
new_w = int(w * scale / patch_size) * patch_size
|
|
image = image.resize((new_h, new_w))
|
|
elif PAD2STRIDE:
|
|
if h % patch_size == 0:
|
|
new_h = h
|
|
else:
|
|
new_h = (h // patch_size + 1) * patch_size
|
|
|
|
if w % patch_size == 0:
|
|
new_w = w
|
|
else:
|
|
new_w = (w // patch_size + 1) * patch_size
|
|
image = pad_image(image, (new_h, new_w), value=127)
|
|
else:
|
|
scale = 1.0
|
|
new_h = int(h * scale / patch_size) * patch_size
|
|
new_w = int(w * scale / patch_size) * patch_size
|
|
image = image.resize((new_h, new_w))
|
|
|
|
return image
|
|
|
|
def process_anyres_video(image, processor):
|
|
if VIDEO_RESIZE is not None:
|
|
image = resize_video(image, patch_size=video_ps, base_size=video_base)
|
|
image = processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
|
|
return image.unsqueeze(0)
|
|
else:
|
|
raise ValueError("VIDEO_RESIZE is not set")
|
|
|
|
def process_anyres_highres_image(image, processor):
|
|
processor2 = None
|
|
if type(processor) is tuple:
|
|
processor, processor2 = processor[0], processor[1]
|
|
|
|
if HIGHRES_BASE is not None:
|
|
image = resize_images(image, patch_size=highres_ps, base_size=highres_base)
|
|
|
|
if processor2 is not None:
|
|
image_original_resize = image.resize((processor2.size['shortest_edge'], processor.size['shortest_edge']))
|
|
image_patches = [image_original_resize] + [image_original_resize]
|
|
image_patches = [processor2.preprocess(image_patch, return_tensors='pt')['pixel_values'][0]
|
|
for image_patch in image_patches]
|
|
else:
|
|
if LOWRES_RESIZE is not None:
|
|
if type(LOWRES_RESIZE) is int:
|
|
image_original_resize = resize_images(image, patch_size=14, base_size=LOWRES_RESIZE)
|
|
else:
|
|
image_original_resize = resize_images(image, patch_size=LOWRES_RESIZE[1], base_size=LOWRES_RESIZE[0])
|
|
else:
|
|
image_original_resize = image.resize((336, 336))
|
|
image_patches = [image_original_resize]
|
|
image_patches = [processor.preprocess(image_patch, return_tensors='pt')['pixel_values'][0]
|
|
for image_patch in image_patches]
|
|
image_padded = processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
|
|
return torch.stack(image_patches, dim=0), image_padded.unsqueeze(0)
|
|
|
|
def read_image_patch(patch_info):
|
|
if 'img_path' in patch_info.keys():
|
|
image = Image.open(patch_info['img_path']).convert('RGB')
|
|
else:
|
|
if 'image_encoing' in patch_info.keys():
|
|
patch_info['image_encoding'] = patch_info['image_encoing']
|
|
image_file_name = patch_info['patch']
|
|
start_bytes = int(patch_info['start_num'])
|
|
file_size = int(patch_info['size'])
|
|
|
|
with open(image_file_name, 'rb') as f:
|
|
f.seek(start_bytes)
|
|
if 'image_encoding' in patch_info.keys() and patch_info['image_encoding'] == 'base64':
|
|
image = Image.open(io.BytesIO(base64.b64decode(f.read(file_size).decode()))).convert("RGB")
|
|
else:
|
|
image = Image.open(io.BytesIO(f.read(file_size))).convert("RGB")
|
|
return image
|
|
|
|
|
|
def get_model_name_from_path(model_path):
|
|
model_path = model_path.strip("/")
|
|
model_paths = model_path.split("/")
|
|
if model_paths[-1].startswith('checkpoint-'):
|
|
return model_paths[-2] + "_" + model_paths[-1]
|
|
else:
|
|
return model_paths[-1]
|
|
|
|
|
|
class KeywordsStoppingCriteria(StoppingCriteria):
|
|
def __init__(self, keywords, tokenizer, input_ids):
|
|
self.keywords = keywords
|
|
self.keyword_ids = []
|
|
for keyword in keywords:
|
|
cur_keyword_ids = tokenizer(keyword).input_ids
|
|
if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id:
|
|
cur_keyword_ids = cur_keyword_ids[1:]
|
|
self.keyword_ids.append(torch.tensor(cur_keyword_ids))
|
|
self.tokenizer = tokenizer
|
|
self.start_len = input_ids.shape[1]
|
|
|
|
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
|
assert output_ids.shape[0] == 1, "Only support batch size 1 (yet)" # TODO
|
|
offset = min(output_ids.shape[1] - self.start_len, 3)
|
|
self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids]
|
|
for keyword_id in self.keyword_ids:
|
|
if output_ids[0, -keyword_id.shape[0]:] == keyword_id:
|
|
return True
|
|
outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0]
|
|
for keyword in self.keywords:
|
|
if keyword in outputs:
|
|
return True
|
|
return False
|