OpenCompass/opencompass/datasets/tydiqa.py
Fengzhe Zhou 689ffe5b63
[Feature] Use dataset in local path (#570)
* update commonsenseqa

* update drop

* update flores_first100

* update gsm8k

* update humaneval

* update lambda

* update obqa

* update piqa

* update race

* update siqa

* update story_cloze

* update strategyqa

* update tydiqa

* update winogrande

* update doc

* update hellaswag

* fix obqa

* update collections

* update .zip name
2023-11-13 13:00:37 +08:00

75 lines
2.7 KiB
Python

import json
import os
import re
from collections import Counter
from datasets import Dataset
from opencompass.openicl.icl_evaluator import BaseEvaluator
from opencompass.utils.text_postprocessors import general_postprocess
from .base import BaseDataset
class TydiQADataset(BaseDataset):
@staticmethod
def load(path, lang):
path = os.path.join(path, 'dev', f'{lang}-dev.jsonl')
dataset_list = []
with open(path, 'r', encoding='utf-8') as f:
for line in f:
line = json.loads(line)
answer = list(set([i['text'] for i in line['answers']]))
line['answer'] = answer
dataset_list.append(line)
return Dataset.from_list(dataset_list)
class TydiQAEvaluator(BaseEvaluator):
# This evaluation class is edited from:
# https://github.com/allenai/bi-att-flow/blob/master/squad/evaluate-v1.1.py
def f1_score(self, prediction, ground_truth):
prediction_tokens = general_postprocess(prediction).split()
ground_truth_tokens = general_postprocess(ground_truth).split()
common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
num_same = sum(common.values())
if num_same == 0:
return 0
precision = 1.0 * num_same / len(prediction_tokens)
recall = 1.0 * num_same / len(ground_truth_tokens)
f1 = (2 * precision * recall) / (precision + recall)
return f1
def exact_match_score(self, prediction, ground_truth):
return (general_postprocess(prediction) == general_postprocess(
ground_truth))
def metric_max_over_ground_truths(self, metric_fn, prediction,
ground_truths):
scores_for_ground_truths = []
for ground_truth in ground_truths:
score = metric_fn(prediction, ground_truth)
scores_for_ground_truths.append(score)
return max(scores_for_ground_truths)
def score(self, predictions, references):
f1 = exact_match = total = 0
if len(predictions) != len(references):
return {
'error': 'predictions and references have different '
'length'
}
for prediction, reference in zip(predictions, references):
prediction = re.split(r'[\n]', prediction, 1)[0].lower()
exact_match += self.metric_max_over_ground_truths(
self.exact_match_score, prediction, reference)
f1 += self.metric_max_over_ground_truths(self.f1_score, prediction,
reference)
total += 1
exact_match = 100.0 * exact_match / total
f1 = 100.0 * f1 / total
return {'exact_match': exact_match, 'f1': f1}