OpenCompass/configs/datasets/race/race_ppl_5831a0.py
Fengzhe Zhou 689ffe5b63
[Feature] Use dataset in local path (#570)
* update commonsenseqa

* update drop

* update flores_first100

* update gsm8k

* update humaneval

* update lambda

* update obqa

* update piqa

* update race

* update siqa

* update story_cloze

* update strategyqa

* update tydiqa

* update winogrande

* update doc

* update hellaswag

* fix obqa

* update collections

* update .zip name
2023-11-13 13:00:37 +08:00

49 lines
1.4 KiB
Python

from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import RaceDataset
race_reader_cfg = dict(
input_columns=['article', 'question', 'A', 'B', 'C', 'D'],
output_column='answer',
train_split="validation",
test_split="test"
)
race_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
ans: dict(
round=[
dict(role="HUMAN", prompt="Article:\n{article}\nQuestion:\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}"),
dict(role="BOT", prompt=f'Answer: {ans}'),
]
)
for ans in ['A', 'B', 'C', 'D']
}),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer))
race_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
race_datasets = [
dict(
abbr='race-middle',
type=RaceDataset,
path='./data/race',
name='middle',
reader_cfg=race_reader_cfg,
infer_cfg=race_infer_cfg,
eval_cfg=race_eval_cfg),
dict(
abbr='race-high',
type=RaceDataset,
path='./data/race',
name='high',
reader_cfg=race_reader_cfg,
infer_cfg=race_infer_cfg,
eval_cfg=race_eval_cfg)
]