mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00

* add ceval, gsm8k modelscope surpport * update race, mmlu, arc, cmmlu, commonsenseqa, humaneval and unittest * update bbh, flores, obqa, siqa, storycloze, summedits, winogrande, xsum datasets * format file * format file * update dataset format * support ms_dataset * udpate dataset for modelscope support * merge myl_dev and update test_ms_dataset * udpate dataset for modelscope support * update readme * update eval_api_zhipu_v2 * remove unused code * add get_data_path function * update readme * remove tydiqa japanese subset * add ceval, gsm8k modelscope surpport * update race, mmlu, arc, cmmlu, commonsenseqa, humaneval and unittest * update bbh, flores, obqa, siqa, storycloze, summedits, winogrande, xsum datasets * format file * format file * update dataset format * support ms_dataset * udpate dataset for modelscope support * merge myl_dev and update test_ms_dataset * update readme * udpate dataset for modelscope support * update eval_api_zhipu_v2 * remove unused code * add get_data_path function * remove tydiqa japanese subset * update util * remove .DS_Store * fix md format * move util into package * update docs/get_started.md * restore eval_api_zhipu_v2.py, add environment setting * Update dataset * Update * Update * Update * Update --------- Co-authored-by: Yun lin <yunlin@U-Q9X2K4QV-1904.local> Co-authored-by: Yunnglin <mao.looper@qq.com> Co-authored-by: Yun lin <yunlin@laptop.local> Co-authored-by: Yunnglin <maoyl@smail.nju.edu.cn> Co-authored-by: zhangsongyang <zhangsongyang@pjlab.org.cn>
177 lines
5.2 KiB
Python
177 lines
5.2 KiB
Python
import json
|
|
from typing import List, Union
|
|
|
|
from datasets import Dataset, concatenate_datasets
|
|
|
|
from opencompass.openicl.icl_evaluator import AccEvaluator
|
|
from opencompass.utils import get_data_path
|
|
|
|
from .base import BaseDataset
|
|
|
|
|
|
class AdvDataset(BaseDataset):
|
|
"""Base adv GLUE dataset. Adv GLUE is built on GLUE dataset. The main
|
|
purpose is to eval the accuracy drop on original set and adv set.
|
|
|
|
Args:
|
|
subset (str): The subset task of adv GLUE dataset.
|
|
filter_keys (str): The keys to be filtered to create the original
|
|
set for comparison.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
subset: str,
|
|
filter_keys: Union[str, List[str]],
|
|
**kwargs,
|
|
):
|
|
self.subset = subset
|
|
if isinstance(filter_keys, str):
|
|
filter_keys = [filter_keys]
|
|
self.filter_keys = filter_keys
|
|
super().__init__(**kwargs)
|
|
|
|
def aug_with_original_data(self, dataset):
|
|
"""Create original dataset and concat to the end."""
|
|
# Remove data without original reference
|
|
dataset = dataset.filter(
|
|
lambda x: any([x[k] for k in self.filter_keys]))
|
|
|
|
def ori_preprocess(example):
|
|
for k in self.filter_keys:
|
|
if example[k]:
|
|
new_k = k.split('original_')[-1]
|
|
example[new_k] = example[k]
|
|
example['type'] = 'original'
|
|
return example
|
|
|
|
original_dataset = dataset.map(ori_preprocess)
|
|
|
|
return concatenate_datasets([dataset, original_dataset])
|
|
|
|
def load(self, path):
|
|
"""Load dataset and aug with original dataset."""
|
|
|
|
path = get_data_path(path)
|
|
with open(path, 'r') as f:
|
|
raw_data = json.load(f)
|
|
subset = raw_data[self.subset]
|
|
|
|
# In case the missing keys in first example causes Dataset
|
|
# to ignore them in the following examples when building.
|
|
for k in self.filter_keys:
|
|
if k not in subset[0]:
|
|
subset[0][k] = None
|
|
|
|
dataset = Dataset.from_list(raw_data[self.subset])
|
|
|
|
dataset = self.aug_with_original_data(dataset)
|
|
|
|
def choices_process(example):
|
|
example['label_option'] = chr(ord('A') + example['label'])
|
|
return example
|
|
|
|
dataset = dataset.map(choices_process)
|
|
return dataset
|
|
|
|
|
|
# label 0 for A. negative
|
|
# label 1 for B. positive
|
|
class AdvSst2Dataset(AdvDataset):
|
|
"""Adv GLUE sst2 dataset."""
|
|
|
|
def __init__(self, **kwargs):
|
|
super().__init__(subset='sst2',
|
|
filter_keys='original_sentence',
|
|
**kwargs)
|
|
|
|
|
|
# label 0 for not_duplicate, A. no
|
|
# label 1 for duplicate, B. yes
|
|
class AdvQqpDataset(AdvDataset):
|
|
"""Adv GLUE qqp dataset."""
|
|
|
|
def __init__(self, **kwargs):
|
|
super().__init__(
|
|
subset='qqp',
|
|
filter_keys=['original_question1', 'original_question2'],
|
|
**kwargs)
|
|
|
|
|
|
# # label 0 for entailment, A. yes
|
|
# # label 1 for neutral, B. maybe
|
|
# # label 2 for contradiction, C. no
|
|
class AdvMnliDataset(AdvDataset):
|
|
"""Adv GLUE mnli dataset."""
|
|
|
|
def __init__(self, **kwargs):
|
|
super().__init__(
|
|
subset='mnli',
|
|
filter_keys=['original_premise', 'original_hypothesis'],
|
|
**kwargs)
|
|
|
|
|
|
# # label 0 for entailment, A. yes
|
|
# # label 1 for neutral, B. maybe
|
|
# # label 2 for contradiction, C. no
|
|
class AdvMnliMMDataset(AdvDataset):
|
|
"""Adv GLUE mnli mm dataset."""
|
|
|
|
def __init__(self, **kwargs):
|
|
super().__init__(
|
|
subset='mnli-mm',
|
|
filter_keys=['original_premise', 'original_hypothesis'],
|
|
**kwargs)
|
|
|
|
|
|
# # label 0 for entailment, A. yes
|
|
# # label 1 for not entailment, B. no
|
|
class AdvQnliDataset(AdvDataset):
|
|
"""Adv GLUE qnli dataset."""
|
|
|
|
def __init__(self, **kwargs):
|
|
super().__init__(
|
|
subset='qnli',
|
|
filter_keys=['original_question', 'original_sentence'],
|
|
**kwargs)
|
|
|
|
|
|
# # label 0 for entailment, A. yes
|
|
# # label 1 for not entailment, B. no
|
|
class AdvRteDataset(AdvDataset):
|
|
"""Adv GLUE rte dataset."""
|
|
|
|
def __init__(self, **kwargs):
|
|
super().__init__(
|
|
subset='rte',
|
|
filter_keys=['original_sentence1', 'original_sentence2'],
|
|
**kwargs)
|
|
|
|
|
|
class AccDropEvaluator(AccEvaluator):
|
|
"""Eval accuracy drop."""
|
|
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
def score(self, predictions: List, references: List) -> dict:
|
|
"""Calculate scores and accuracy.
|
|
|
|
Args:
|
|
predictions (List): List of probabilities for each class of each
|
|
sample.
|
|
references (List): List of target labels for each sample.
|
|
|
|
Returns:
|
|
dict: calculated scores.
|
|
"""
|
|
|
|
n = len(predictions)
|
|
assert n % 2 == 0, 'Number of examples should be even.'
|
|
acc_after = super().score(predictions[:n // 2], references[:n // 2])
|
|
acc_before = super().score(predictions[n // 2:], references[n // 2:])
|
|
acc_drop = 1 - acc_after['accuracy'] / acc_before['accuracy']
|
|
return dict(acc_drop=acc_drop,
|
|
acc_after=acc_after['accuracy'],
|
|
acc_before=acc_before['accuracy'])
|