OpenCompass/configs/datasets/subjective/wildbench/wildbench_single_judge.py
klein 65fad8e2ac
[Fix] minor update wildbench (#1335)
* update crb

* update crbbench

* update crbbench

* update crbbench

* minor update wildbench

* [Fix] Update doc of wildbench, and merge wildbench into subjective

* [Fix] Update doc of wildbench, and merge wildbench into subjective, fix crbbench

* Update crb.md

* Update crb_pair_judge.py

* Update crb_single_judge.py

* Update subjective_evaluation.md

* Update openai_api.py

* [Update] update wildbench readme

* [Update] update wildbench readme

* [Update] update wildbench readme, remove crb

* Delete configs/eval_subjective_wildbench_pair.py

* Delete configs/eval_subjective_wildbench_single.py

* Update __init__.py

---------

Co-authored-by: bittersweet1999 <148421775+bittersweet1999@users.noreply.github.com>
2024-07-26 11:19:04 +08:00

48 lines
1.3 KiB
Python

from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import ChatInferencer, GenInferencer
from opencompass.openicl.icl_evaluator import LMEvaluator
from opencompass.datasets import WildBenchDataset
subjective_reader_cfg = dict(
input_columns=['dialogue', 'prompt'],
output_column='judge',
)
data_path ='./data/WildBench/wildbench.jsonl'
wildbench_single_datasets = []
# the question is a list, how to process it
subjective_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template="""{dialogue}"""
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=ChatInferencer, max_seq_len=4096, max_out_len=512, infer_mode='last'),
)
subjective_eval_cfg = dict(
evaluator=dict(
type=LMEvaluator,
prompt_template=dict(
type=PromptTemplate,
template="""{prompt}"""
),
),
pred_role='BOT',
)
wildbench_single_datasets.append(
dict(
abbr='wildbench',
type=WildBenchDataset,
path=data_path,
eval_mode='single',
reader_cfg=subjective_reader_cfg,
infer_cfg=subjective_infer_cfg,
eval_cfg=subjective_eval_cfg
))