OpenCompass/opencompass/models/turbomind_with_tf_above_v4_33.py
Fengzhe Zhou 8ea2c404d7
[Feat] enable HuggingFacewithChatTemplate with --accelerator via cli (#1163)
* enable HuggingFacewithChatTemplate with --accelerator via cli

* rm vllm_internlm2_chat_7b
2024-05-15 21:51:07 +08:00

196 lines
7.7 KiB
Python

# flake8: noqa
# yapf: disable
import copy
from concurrent.futures import ThreadPoolExecutor
from typing import Dict, List, Optional, Union
from opencompass.models.base import BaseModel
from opencompass.utils.logging import get_logger
from opencompass.utils.prompt import PromptList
from .huggingface_above_v4_33 import (_convert_chat_messages,
_format_with_fast_chat_template,
_get_meta_template,
_get_possible_max_seq_len)
PromptType = Union[PromptList, str]
def valid_str(string, coding='utf-8'):
"""decode text according to its encoding type."""
invalid_chars = [b'\xef\xbf\xbd']
bstr = bytes(string, coding)
for invalid_char in invalid_chars:
bstr = bstr.replace(invalid_char, b'')
ret = bstr.decode(encoding=coding, errors='ignore')
return ret
class TurboMindModelwithChatTemplate(BaseModel):
def __init__(
self,
path: str,
tokenizer_only: bool = False,
engine_config: Dict = {},
gen_config: Dict = {},
concurrency: int = 8,
max_seq_len: int = None,
meta_template: Optional[Dict] = None,
fastchat_template: Optional[str] = None,
stop_words: List[str] = [],
):
from lmdeploy.messages import TurbomindEngineConfig
from lmdeploy.turbomind import TurboMind
from lmdeploy.version import version_info
from transformers import AutoTokenizer
self.logger = get_logger()
self.path = path
self.tokenizer_only = tokenizer_only
self.template_parser = _get_meta_template(meta_template)
self.max_seq_len = _get_possible_max_seq_len(max_seq_len, path)
self.origin_tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True)
if not tokenizer_only:
DEFAULT_ENGING_CONFIG = {'session_len': self.max_seq_len}
_engine_config = DEFAULT_ENGING_CONFIG.copy()
_engine_config.update(engine_config)
engine_config = TurbomindEngineConfig(**_engine_config)
tm_model = TurboMind.from_pretrained(path, engine_config=engine_config)
self.tokenizer = tm_model.tokenizer
self.generators = [tm_model.create_instance() for i in range(concurrency)]
self.generator_ids = [i + 1 for i in range(concurrency)]
self.concurrency = concurrency
self.gen_config = gen_config
self.version_info = version_info
self.fastchat_template = fastchat_template
self.stop_words = list(set(stop_words + self._get_potential_stop_words(path)))
self.logger.info(f'using stop words: {self.stop_words}')
def _get_potential_stop_words(self, path: Optional[str]):
from transformers import GenerationConfig
potential_stop_words = []
try:
generation_config = GenerationConfig.from_pretrained(path)
for token_id in generation_config.eos_token_id:
potential_stop_words.append(self.origin_tokenizer.decode(token_id))
except:
pass
potential_stop_words.append(self.origin_tokenizer.eos_token)
potential_stop_words = list(set(potential_stop_words))
return potential_stop_words
def generate(self,
inputs: List[str],
max_out_len: int = 512,
stopping_criteria: List[str] = [],
do_sample: Optional[bool] = None,
temperature: int = 1,
**kwargs) -> List[str]:
"""Generate results given a list of inputs.
Args:
inputs (List[str]): A list of prompts
max_out_len (int): The maximum length of the output.
Returns:
List[str]: A list of generated strings.
"""
assert isinstance(inputs, List), f'List(str) is expected, but got {type(inputs)}'
messages = _convert_chat_messages(inputs)
if self.fastchat_template:
messages = _format_with_fast_chat_template(messages, self.fastchat_template)
else:
messages = [self.origin_tokenizer.apply_chat_template(m, add_generation_prompt=True, tokenize=False) for m in messages]
# split messages into batches
batch_messages = [messages[i:i + self.concurrency] for i in range(0, len(messages), self.concurrency)]
stop_words = list(set(self.stop_words + stopping_criteria))
DEFAULT_GEN_CONFIG = {
'max_new_tokens': max_out_len,
'min_new_tokens': 1,
'top_k': 1,
'stop_words': stop_words,
}
gen_config = copy.deepcopy(DEFAULT_GEN_CONFIG)
gen_config.update(self.gen_config)
if do_sample:
gen_config['top_k'] = 1000
gen_config['temperature'] = temperature
# if stopping_criteria:
# stop_words = gen_config.get('stop_words', [])
# for t in stopping_criteria:
# t = self.tokenizer.encode(t, add_bos=False)
# stop_words.append(t[0])
# gen_config['stop_words'] = list(set(stop_words))
from lmdeploy.messages import EngineGenerationConfig, GenerationConfig
gen_config = GenerationConfig(**gen_config)
gen_config = EngineGenerationConfig.From(gen_config, self.tokenizer)
results = []
for batch_message in batch_messages:
n = len(batch_message)
with ThreadPoolExecutor() as executor:
_results = list(
executor.map(
self._generate,
self.generators[:n],
self.generator_ids[:n],
batch_message,
[gen_config] * n,
))
results += _results
for s in stop_words:
results = [r.split(s)[0] for r in results]
return results
def _generate(self,
generator,
session_id,
prompt: PromptType,
gen_config=None) -> str:
"""Generate results given a list of inputs.
Args:
prompt (PromptType): A string or PromptDict.
The PromptDict should be organized in OpenCompass'
API format.
gen_config (EngineGenerationConfig, optional): Generation
config to set arguments like top_k, top_p, temperature.
Returns:
str: The generated string.
"""
assert type(prompt) is str, 'We only support string for TurboMind Python API'
input_ids = self.tokenizer.encode(prompt)
for outputs in generator.stream_infer(session_id=session_id,
input_ids=[input_ids],
gen_config=gen_config,
sequence_start=True,
sequence_end=True,
step=0,
stream_output=False):
if self.version_info >= (0, 4, 0):
output_ids = outputs.token_ids
else:
_, output_ids, _ = outputs
response = self.tokenizer.decode(output_ids)
response = valid_str(response)
return response
def get_token_len(self, prompt: str) -> int:
"""Get lengths of the tokenized strings.
Args:
prompt (str): Input string.
Returns:
int: Length of the input tokens
"""
m = _convert_chat_messages([prompt])[0]
t = self.origin_tokenizer.apply_chat_template(m, add_generation_prompt=True, return_dict=True)
return len(t['input_ids'])