OpenCompass/opencompass/configs/datasets/summedits/summedits_ppl_3c30d0.py
Songyang Zhang 46cc7894e1
[Feature] Support import configs/models/summarizers from whl (#1376)
* [Feature] Support import configs/models/summarizers from whl

* Update LCBench configs

* Update

* Update

* Update

* Update

* update

* Update

* Update

* Update

* Update

* Update
2024-08-01 00:42:48 +08:00

59 lines
2.0 KiB
Python

from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import HFDataset
summedits_reader_cfg = dict(
input_columns=['doc', 'summary'],
output_column='label',
test_split='train')
summedits_prompt1 = "Given the document below, you have to determine if 'Yes' or 'No', the summary is factually consistent with the document."
summedits_prompt2 = 'Document:\n{doc}\nSummary:\n{summary}\nIs the summary factually consistent with the document? '
summedits_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
0:
dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt=summedits_prompt1)
],
round=[
dict(role='HUMAN', prompt=summedits_prompt2),
dict(role='BOT', prompt='No')
]),
1:
dict(
begin=[
dict(
role='SYSTEM',
fallback_role='HUMAN',
prompt=summedits_prompt1)
],
round=[
dict(role='HUMAN', prompt=summedits_prompt2),
dict(role='BOT', prompt='Yes')
]),
}),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer))
summedits_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
summedits_datasets = [
dict(
type=HFDataset,
abbr='summedits',
path='json',
split='train',
data_files='./data/summedits/summedits.jsonl',
reader_cfg=summedits_reader_cfg,
infer_cfg=summedits_infer_cfg,
eval_cfg=summedits_eval_cfg)
]