OpenCompass/opencompass/configs/datasets/longbench/longbenchnarrativeqa/longbench_narrativeqa_gen_a68305.py
2024-09-06 15:50:12 +08:00

44 lines
1.6 KiB
Python

from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import LongBenchF1Evaluator, LongBenchnarrativeqaDataset
LongBench_narrativeqa_reader_cfg = dict(
input_columns=['context', 'input'],
output_column='answers',
train_split='test',
test_split='test',
)
LongBench_narrativeqa_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(
role='HUMAN',
prompt='You are given a story, which can be either a novel or a movie script, and a question. Answer the question as concisely as you can, using a single phrase if possible. Do not provide any explanation.\n\nStory: {context}\n\nNow, answer the question based on the story as concisely as you can, using a single phrase if possible. Do not provide any explanation.\n\nQuestion: {input}\n\nAnswer:',
),
],
),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=128),
)
LongBench_narrativeqa_eval_cfg = dict(
evaluator=dict(type=LongBenchF1Evaluator), pred_role='BOT'
)
LongBench_narrativeqa_datasets = [
dict(
type=LongBenchnarrativeqaDataset,
abbr='LongBench_narrativeqa',
path='opencompass/Longbench',
name='narrativeqa',
reader_cfg=LongBench_narrativeqa_reader_cfg,
infer_cfg=LongBench_narrativeqa_infer_cfg,
eval_cfg=LongBench_narrativeqa_eval_cfg,
)
]