OpenCompass/opencompass/configs/datasets/infinitebench/infinitebenchenqa/infinitebench_enqa_gen_a1640c.py
Songyang Zhang 46cc7894e1
[Feature] Support import configs/models/summarizers from whl (#1376)
* [Feature] Support import configs/models/summarizers from whl

* Update LCBench configs

* Update

* Update

* Update

* Update

* update

* Update

* Update

* Update

* Update

* Update
2024-08-01 00:42:48 +08:00

41 lines
1.4 KiB
Python

from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import InfiniteBenchenqaDataset, LongBenchF1Evaluator
InfiniteBench_enqa_reader_cfg = dict(
input_columns=['context', 'question'],
output_column='answer',
)
InfiniteBench_enqa_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
begin=[
dict(role='SYSTEM', fallback_role='HUMAN', prompt='You are a helpful assistant.'),
],
round=[
dict(role='HUMAN', prompt='Read the book below and answer a question.\n\n{context}\n\nQuestion: {question}\n\nBe very concise.'),
dict(role='BOT', prompt=''),
], )),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=40)
)
InfiniteBench_enqa_eval_cfg = dict(
evaluator=dict(type=LongBenchF1Evaluator),
pred_role='BOT'
)
InfiniteBench_enqa_datasets = [
dict(
type=InfiniteBenchenqaDataset,
abbr='InfiniteBench_enqa',
path='./data/InfiniteBench/longbook_qa_eng.jsonl',
reader_cfg=InfiniteBench_enqa_reader_cfg,
infer_cfg=InfiniteBench_enqa_infer_cfg,
eval_cfg=InfiniteBench_enqa_eval_cfg)
]