mirror of
https://github.com/open-compass/opencompass.git
synced 2025-05-30 16:03:24 +08:00

* feat: add custom summarizer in CLI run mode * feat: search local config by match_cfg_file
318 lines
14 KiB
Python
318 lines
14 KiB
Python
import argparse
|
|
import getpass
|
|
import os
|
|
import os.path as osp
|
|
from datetime import datetime
|
|
|
|
from mmengine.config import Config, DictAction
|
|
|
|
from opencompass.partitioners import MultimodalNaivePartitioner
|
|
from opencompass.registry import PARTITIONERS, RUNNERS
|
|
from opencompass.runners import SlurmRunner
|
|
from opencompass.utils import LarkReporter, Summarizer, get_logger
|
|
from opencompass.utils.run import (exec_mm_infer_runner, fill_eval_cfg,
|
|
fill_infer_cfg, get_config_from_arg)
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(description='Run an evaluation task')
|
|
parser.add_argument('config', nargs='?', help='Train config file path')
|
|
|
|
# add mutually exclusive args `--slurm` `--dlc`, defaults to local runner
|
|
# if "infer" or "eval" not specified
|
|
launch_method = parser.add_mutually_exclusive_group()
|
|
launch_method.add_argument('--slurm',
|
|
action='store_true',
|
|
default=False,
|
|
help='Whether to force tasks to run with srun. '
|
|
'If True, `--partition(-p)` must be set. '
|
|
'Defaults to False')
|
|
launch_method.add_argument('--dlc',
|
|
action='store_true',
|
|
default=False,
|
|
help='Whether to force tasks to run on dlc. If '
|
|
'True, `--aliyun-cfg` must be set. Defaults'
|
|
' to False')
|
|
# multi-modal support
|
|
parser.add_argument('--mm-eval',
|
|
help='Whether or not enable multimodal evaluation',
|
|
action='store_true',
|
|
default=False)
|
|
# Add shortcut parameters (models, datasets and summarizer)
|
|
parser.add_argument('--models', nargs='+', help='', default=None)
|
|
parser.add_argument('--datasets', nargs='+', help='', default=None)
|
|
parser.add_argument('--summarizer', help='', default=None)
|
|
# add general args
|
|
parser.add_argument('--debug',
|
|
help='Debug mode, in which scheduler will run tasks '
|
|
'in the single process, and output will not be '
|
|
'redirected to files',
|
|
action='store_true',
|
|
default=False)
|
|
parser.add_argument('--dry-run',
|
|
help='Dry run mode, in which the scheduler will not '
|
|
'actually run the tasks, but only print the commands '
|
|
'to run',
|
|
action='store_true',
|
|
default=False)
|
|
parser.add_argument('-m',
|
|
'--mode',
|
|
help='Running mode. You can choose "infer" if you '
|
|
'only want the inference results, or "eval" if you '
|
|
'already have the results and want to evaluate them, '
|
|
'or "viz" if you want to visualize the results.',
|
|
choices=['all', 'infer', 'eval', 'viz'],
|
|
default='all',
|
|
type=str)
|
|
parser.add_argument('-r',
|
|
'--reuse',
|
|
nargs='?',
|
|
type=str,
|
|
const='latest',
|
|
help='Reuse previous outputs & results, and run any '
|
|
'missing jobs presented in the config. If its '
|
|
'argument is not specified, the latest results in '
|
|
'the work_dir will be reused. The argument should '
|
|
'also be a specific timestamp, e.g. 20230516_144254'),
|
|
parser.add_argument('-w',
|
|
'--work-dir',
|
|
help='Work path, all the outputs will be '
|
|
'saved in this path, including the slurm logs, '
|
|
'the evaluation results, the summary results, etc.'
|
|
'If not specified, the work_dir will be set to '
|
|
'./outputs/default.',
|
|
default=None,
|
|
type=str)
|
|
parser.add_argument('-l',
|
|
'--lark',
|
|
help='Report the running status to lark bot',
|
|
action='store_true',
|
|
default=False)
|
|
parser.add_argument('--max-partition-size',
|
|
help='The maximum size of an infer task. Only '
|
|
'effective when "infer" is missing from the config.',
|
|
type=int,
|
|
default=40000),
|
|
parser.add_argument(
|
|
'--gen-task-coef',
|
|
help='The dataset cost measurement coefficient for generation tasks, '
|
|
'Only effective when "infer" is missing from the config.',
|
|
type=int,
|
|
default=20)
|
|
parser.add_argument('--max-num-workers',
|
|
help='Max number of workers to run in parallel. '
|
|
'Will be overrideen by the "max_num_workers" argument '
|
|
'in the config.',
|
|
type=int,
|
|
default=32)
|
|
parser.add_argument('--max-workers-per-gpu',
|
|
help='Max task to run in parallel on one GPU. '
|
|
'It will only be used in the local runner.',
|
|
type=int,
|
|
default=1)
|
|
parser.add_argument(
|
|
'--retry',
|
|
help='Number of retries if the job failed when using slurm or dlc. '
|
|
'Will be overrideen by the "retry" argument in the config.',
|
|
type=int,
|
|
default=2)
|
|
# set srun args
|
|
slurm_parser = parser.add_argument_group('slurm_args')
|
|
parse_slurm_args(slurm_parser)
|
|
# set dlc args
|
|
dlc_parser = parser.add_argument_group('dlc_args')
|
|
parse_dlc_args(dlc_parser)
|
|
# set hf args
|
|
hf_parser = parser.add_argument_group('hf_args')
|
|
parse_hf_args(hf_parser)
|
|
args = parser.parse_args()
|
|
if args.slurm:
|
|
assert args.partition is not None, (
|
|
'--partition(-p) must be set if you want to use slurm')
|
|
if args.dlc:
|
|
assert os.path.exists(args.aliyun_cfg), (
|
|
'When launching tasks using dlc, it needs to be configured '
|
|
'in "~/.aliyun.cfg", or use "--aliyun-cfg $ALiYun-CFG_Path"'
|
|
' to specify a new path.')
|
|
return args
|
|
|
|
|
|
def parse_slurm_args(slurm_parser):
|
|
"""These args are all for slurm launch."""
|
|
slurm_parser.add_argument('-p',
|
|
'--partition',
|
|
help='Slurm partition name',
|
|
default=None,
|
|
type=str)
|
|
slurm_parser.add_argument('-q',
|
|
'--quotatype',
|
|
help='Slurm quota type',
|
|
default=None,
|
|
type=str)
|
|
slurm_parser.add_argument('--qos',
|
|
help='Slurm quality of service',
|
|
default=None,
|
|
type=str)
|
|
|
|
|
|
def parse_dlc_args(dlc_parser):
|
|
"""These args are all for dlc launch."""
|
|
dlc_parser.add_argument('--aliyun-cfg',
|
|
help='The config path for aliyun config',
|
|
default='~/.aliyun.cfg',
|
|
type=str)
|
|
|
|
|
|
def parse_hf_args(hf_parser):
|
|
"""These args are all for the quick construction of HuggingFace models."""
|
|
hf_parser.add_argument('--hf-path', type=str)
|
|
hf_parser.add_argument('--peft-path', type=str)
|
|
hf_parser.add_argument('--tokenizer-path', type=str)
|
|
hf_parser.add_argument('--model-kwargs', nargs='+', action=DictAction)
|
|
hf_parser.add_argument('--tokenizer-kwargs', nargs='+', action=DictAction)
|
|
hf_parser.add_argument('--max-out-len', type=int)
|
|
hf_parser.add_argument('--max-seq-len', type=int)
|
|
hf_parser.add_argument('--no-batch-padding',
|
|
action='store_true',
|
|
default=False)
|
|
hf_parser.add_argument('--batch-size', type=int)
|
|
hf_parser.add_argument('--num-gpus', type=int)
|
|
hf_parser.add_argument('--pad-token-id', type=int)
|
|
|
|
|
|
def main():
|
|
args = parse_args()
|
|
if args.dry_run:
|
|
args.debug = True
|
|
# initialize logger
|
|
logger = get_logger(log_level='DEBUG' if args.debug else 'INFO')
|
|
|
|
cfg = get_config_from_arg(args)
|
|
if args.work_dir is not None:
|
|
cfg['work_dir'] = args.work_dir
|
|
else:
|
|
cfg.setdefault('work_dir', './outputs/default/')
|
|
|
|
# cfg_time_str defaults to the current time
|
|
cfg_time_str = dir_time_str = datetime.now().strftime('%Y%m%d_%H%M%S')
|
|
if args.reuse:
|
|
if args.reuse == 'latest':
|
|
if not os.path.exists(cfg.work_dir) or not os.listdir(
|
|
cfg.work_dir):
|
|
logger.warning('No previous results to reuse!')
|
|
else:
|
|
dirs = os.listdir(cfg.work_dir)
|
|
dir_time_str = sorted(dirs)[-1]
|
|
else:
|
|
dir_time_str = args.reuse
|
|
logger.info(f'Reusing experiements from {dir_time_str}')
|
|
elif args.mode in ['eval', 'viz']:
|
|
raise ValueError('You must specify -r or --reuse when running in eval '
|
|
'or viz mode!')
|
|
|
|
# update "actual" work_dir
|
|
cfg['work_dir'] = osp.join(cfg.work_dir, dir_time_str)
|
|
os.makedirs(osp.join(cfg.work_dir, 'configs'), exist_ok=True)
|
|
|
|
# dump config
|
|
output_config_path = osp.join(cfg.work_dir, 'configs',
|
|
f'{cfg_time_str}.py')
|
|
cfg.dump(output_config_path)
|
|
# Config is intentally reloaded here to avoid initialized
|
|
# types cannot be serialized
|
|
cfg = Config.fromfile(output_config_path, format_python_code=False)
|
|
|
|
# report to lark bot if specify --lark
|
|
if not args.lark:
|
|
cfg['lark_bot_url'] = None
|
|
elif cfg.get('lark_bot_url', None):
|
|
content = f'{getpass.getuser()}\'s task has been launched!'
|
|
LarkReporter(cfg['lark_bot_url']).post(content)
|
|
|
|
if args.mode in ['all', 'infer']:
|
|
# When user have specified --slurm or --dlc, or have not set
|
|
# "infer" in config, we will provide a default configuration
|
|
# for infer
|
|
if (args.dlc or args.slurm) and cfg.get('infer', None):
|
|
logger.warning('You have set "infer" in the config, but '
|
|
'also specified --slurm or --dlc. '
|
|
'The "infer" configuration will be overridden by '
|
|
'your runtime arguments.')
|
|
# Check whether run multimodal evaluation
|
|
if args.mm_eval:
|
|
partitioner = MultimodalNaivePartitioner(
|
|
osp.join(cfg['work_dir'], 'predictions/'))
|
|
tasks = partitioner(cfg)
|
|
exec_mm_infer_runner(tasks, args, cfg)
|
|
return
|
|
|
|
if args.dlc or args.slurm or cfg.get('infer', None) is None:
|
|
fill_infer_cfg(cfg, args)
|
|
|
|
if args.partition is not None:
|
|
if RUNNERS.get(cfg.infer.runner.type) == SlurmRunner:
|
|
cfg.infer.runner.partition = args.partition
|
|
cfg.infer.runner.quotatype = args.quotatype
|
|
else:
|
|
logger.warning('SlurmRunner is not used, so the partition '
|
|
'argument is ignored.')
|
|
if args.debug:
|
|
cfg.infer.runner.debug = True
|
|
if args.lark:
|
|
cfg.infer.runner.lark_bot_url = cfg['lark_bot_url']
|
|
cfg.infer.partitioner['out_dir'] = osp.join(cfg['work_dir'],
|
|
'predictions/')
|
|
partitioner = PARTITIONERS.build(cfg.infer.partitioner)
|
|
tasks = partitioner(cfg)
|
|
if args.dry_run:
|
|
return
|
|
runner = RUNNERS.build(cfg.infer.runner)
|
|
# Add extra attack config if exists
|
|
if hasattr(cfg, 'attack'):
|
|
for task in tasks:
|
|
cfg.attack.dataset = task.datasets[0][0].abbr
|
|
task.attack = cfg.attack
|
|
runner(tasks)
|
|
|
|
# evaluate
|
|
if args.mode in ['all', 'eval']:
|
|
# When user have specified --slurm or --dlc, or have not set
|
|
# "eval" in config, we will provide a default configuration
|
|
# for eval
|
|
if (args.dlc or args.slurm) and cfg.get('eval', None):
|
|
logger.warning('You have set "eval" in the config, but '
|
|
'also specified --slurm or --dlc. '
|
|
'The "eval" configuration will be overridden by '
|
|
'your runtime arguments.')
|
|
|
|
if args.dlc or args.slurm or cfg.get('eval', None) is None:
|
|
fill_eval_cfg(cfg, args)
|
|
|
|
if args.partition is not None:
|
|
if RUNNERS.get(cfg.infer.runner.type) == SlurmRunner:
|
|
cfg.eval.runner.partition = args.partition
|
|
cfg.eval.runner.quotatype = args.quotatype
|
|
else:
|
|
logger.warning('SlurmRunner is not used, so the partition '
|
|
'argument is ignored.')
|
|
if args.debug:
|
|
cfg.eval.runner.debug = True
|
|
if args.lark:
|
|
cfg.eval.runner.lark_bot_url = cfg['lark_bot_url']
|
|
cfg.eval.partitioner['out_dir'] = osp.join(cfg['work_dir'], 'results/')
|
|
partitioner = PARTITIONERS.build(cfg.eval.partitioner)
|
|
tasks = partitioner(cfg)
|
|
if args.dry_run:
|
|
return
|
|
runner = RUNNERS.build(cfg.eval.runner)
|
|
runner(tasks)
|
|
|
|
# visualize
|
|
if args.mode in ['all', 'eval', 'viz']:
|
|
summarizer = Summarizer(cfg)
|
|
summarizer.summarize(time_str=cfg_time_str)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|